

Generative Information Retrieval

SIGIR-AP 2023 tutorial

Yubao Tang^{a,b}, Ruqing Zhang^{a,b}, Jiafeng Guo^{a,b} and Maarten de Rijke^c

https://sigir-ap2023-generative-ir.github.io/

November 26, 2023

^a Institute of Computing Technology, Chinese Academy of Sciences

^b University of Chinese Academy of Sciences

^c University of Amsterdam

About presenters

Yubao Tang Phd student @ICT, CAS

Ruqing Zhang
Faculty
@ICT, CAS

Jiafeng Guo Faculty @ICT, CAS

Maarten de Rijke Faculty @UvA

1

Information retrieval

Information retrieval (IR) is the activity of obtaining information system resources that are relevant to an information need from a collection of those resources.

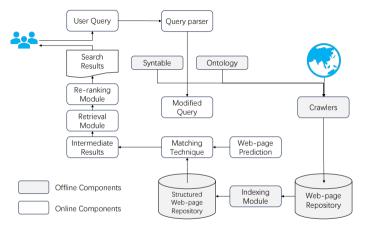
Given: User query (keywords, question, image, ...)

Rank: Information objects (passages, documents, images, products, ...)

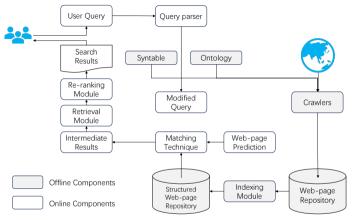
Ordered by: Relevance scores

2

Complex architecture design behind search engines



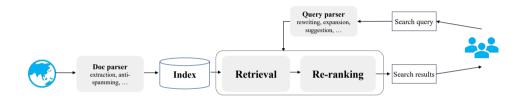
Complex architecture design behind search engines



• Advantages:

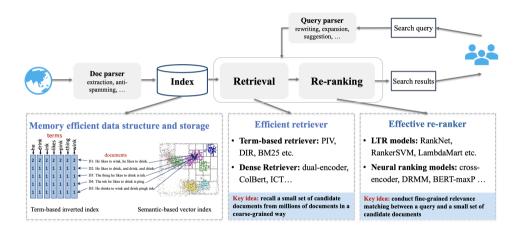
- Pipelined paradigm has withstood the test of time
- Advanced machine learning and deep learning approaches applied to many components of modern systems

Core pipelined paradigm: Index-Retrieval-Ranking



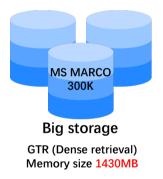
- Index: Build an index for each document in the entire corpus
- Retriever: Find an initial set of candidate documents for a query
- Re-ranker: Determine the relevance degree of each candidate

Index-Retrieval-Ranking: Disadvantages



 Effectiveness: Heterogeneous ranking components are usually difficult to be optimized in an end-to-end way towards the global objective

Index-Retrieval-Ranking: Disadvantages

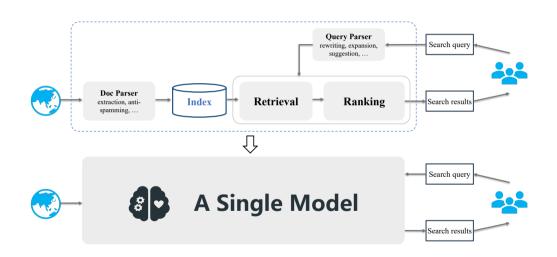


GTR (Dense retrieval)
Online latency 1.97s

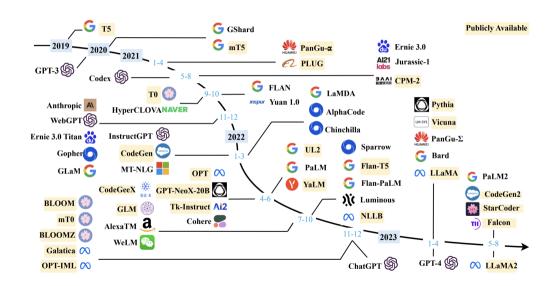
• **Efficiency**: A large document index is needed to search over the corpus, leading to significant memory consumption and computational overhead

What if we replaced the pipelined architecture with a single consolidated model that efficiently and effectively encodes all of the information contained in the corpus?

Opinion paper: A single model for IR



Generative language models



Two families of generative retrieval

- Closed-book: The language model is the **only source** of knowledge leveraged during generation, e.g.,
 - Capturing document ids in the language models
 - Language models as retrieval agents via prompting
- Open-book: The language model can draw on **external memory** prior to, during and after generation, e.g.,
 - Retrieve-augmented generation of answers
 - Tool-augmented generation of answers

Two families of generative retrieval

- Closed-book: The language model is the only source of knowledge leveraged during generation, e.g.,
 - Capturing document ids in the language models
 - Language models as retrieval agents via prompting
- Open-book: The language model can draw on external memory prior to, during and after generation, e.g.,
 - Retrieve-augmented generation of answers
 - Tool-augmented generation of answers

Closed-book generative retrieval

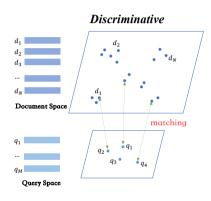
The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation problem

Closed-book generative retrieval

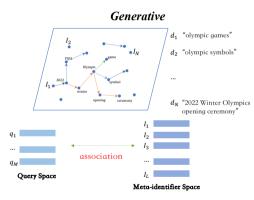
The IR task can be formulated as a sequence-to-sequence (Seq2Seq) generation problem

- Input: A sequence of query words
- Output: A sequence of document identifiers

Neural IR models: Discriminative vs. Generative

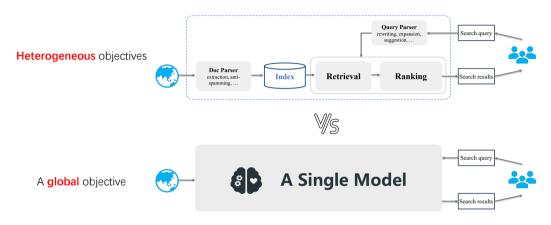


$$p(R = 1|q,d) \approx \dots \approx argmax \ s(\vec{q}, \vec{d})$$
(probabilistic ranking principle)



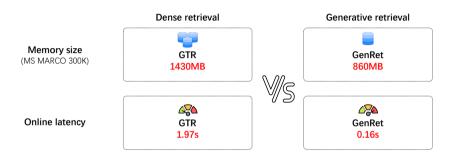
$$p(q|d) \approx p(docID|q) = argmax p((I_1, ..., I_k)|q)$$
(query likelihood)

Why generative retrieval?



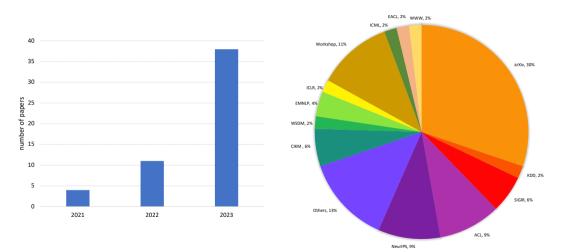
• Effectiveness: Knowledge of all documents in corpus is encoded into model parameters, which can be optimized directly in an end-to-end manner

Why generative retrieval?



- **Efficiency**: Main memory computation of GR is the storage of document identifiers and model parameters
- Heavy retrieval process is replaced with a light generative process over the vocabulary of identifiers

Statistics of related publications



The First Workshop on Generative Information Retrieval @SIGIR2023

	Title	Description	Panelists		Moderator		Start	End
1	Opening			v	Gabriel Bénédict	~	Thursday, 9:00 AM	Thursday, 9:30 AM
2	Panel Discussions	Model Training Architectures, training, RL, etc.	Jiafeng Guo Vinh Q. Tran Minjoon Seo Rajhans Samdani	٧	Don Metzler	٧	Thursday, 9:30 AM	Thursday, 10:30 AM
3	Coffee Break			~		~	Thursday, 10:30 AM	Thursday, 11:00 AM
4	Poster Session	Shared with REML and ReNeuIR		~		~	Thursday, 11:00 AM	Thursday, 12:30 PM
5	Lunch			~		~	Thursday, 12:30 PM	Thursday, 1:30 PM
6	Panel Discussions	Broader Issues Evaluation, HCI, ecosystem concerns, societal issues, etc.	Chirag Shah Emily Bender Yiqun Liu Guido Zuccon	٧	Gabriel Bénédict, R2 Ruqing Zhang	٧	Thursday, 1:30 PM	Thursday, 2:30 PM
7	Coffee Break			~		~	Thursday, 2:30 PM	Thursday, 2:45 PM
8	Panel Discussions	Model Behavior Inputs, outputs, hallucination, answer generation, etc.	Chua Tat-Seng Omar Khattab Nazneen Fatema Rajani Fabio Petroni	*	Andrew Yates, RZ Ruqing Zhang	•	Thursday, 2:45 PM	Thursday, 3:45 PM
9	Coffee Break			~		~	Thursday, 3:45 PM	Thursday, 4:00 PM
10	Roundtable Discussion			~	Gabriel Bénédict, Andrew Yates	v	Thursday, 4:00 PM	Thursday, 4:45 PM
11	Closing			~	Gabriel Bénédict	~	Thursday, 4:45 PM	Thursday, 5:00 PM

https://coda.io/@sigir/gen-ir

Goals of the tutorial

- We will cover key developments on generative information retrieval (mostly 2021–2023)
 - **■** Problem definitions
 - Docid design
 - **■** Training approaches
 - **■** Inference strategies
 - Applications

Goals of the tutorial

- We will cover key developments on generative information retrieval (mostly 2021–2023)
 - **■** Problem definitions
 - Docid design
 - Training approaches
 - Inference strategies
 - Applications
- We are still far from understanding how to best develop generative IR architecture compared to traditional pipelined IR architecture:
 - Taxonomies of existing research and key insights
 - Our perspectives on the current challenges & future directions

Schedule

Time	Section	Presenter
13:00-13:10	Section 1: Introduction	Maarten de Rijke
13:10-13:30	Section 2: Definitions & Preliminaries	Jiafeng Guo
13:30-14:30	Section 3: Docid design	Yubao Tang

15min coffee break

14:45-15:20	Section 4: Training approaches	Ruqing Zhang
15:20-15:40	Section 5: Inference strategies	Ruqing Zhang
15:40-16:00	Section 6: Applications	Yubao Tang
16:00-16:10	Section 7: Challenges & Opportunities	Maarten de Rijke
16:10-16:30	Q & A	All

Definitions & Preliminaries

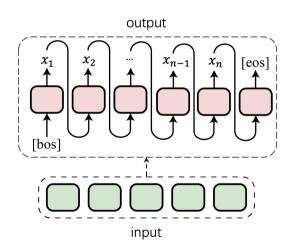
Section 2:

Generative retrieval: Definition

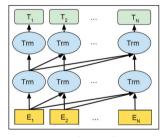
Generative retrieval (GR) aims to directly generate the identifiers of information resources (e.g., docids) that are relevant to an information need (e.g., an input query) in an autoregressive fashion

Autoregressive formulation

$$P(x_n|x_1,x_2,\ldots,x_{n-1})$$

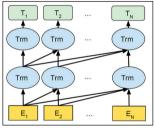


Autoregressive models

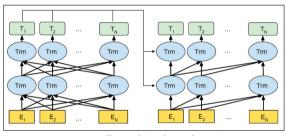


Decoder-only

Autoregressive models

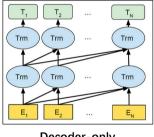


Decoder-only

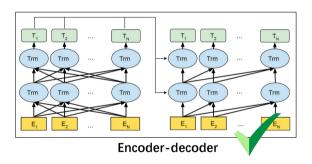


Encoder-decoder

Autoregressive models



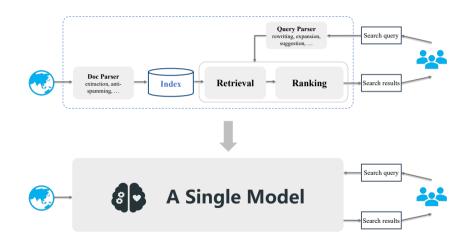
Decoder-only



Generative retrieval: Definition

GR usually exploits a Seq2Seq encoder-decoder architecture to generate a ranked list of docids for an input query, in an autoregressive fashion

Revisit the key idea



Two basic operations in GR

• Indexing: To memorize information about each document, a GR model should learn to associate the content of each document with its corresponding docid

- Indexing: To memorize information about each document, a GR model should learn to associate the content of each document with its corresponding docid
- Retrieval: Given an input query, a GR model should return a ranked list of candidate docids by autoregressively generating the docid string

Indexing: Formulation

Given:

- A corpus of documents *D*;
- A corresponding docid set *I*_D;

Indexing: Formulation

Given:

- A corpus of documents D;
- A corresponding docid set *I_D*;

The indexing task directly takes each original document $d \in D$ as input and generates its docid $id \in I_D$ as output in a straightforward Seq2Seq fashion, i.e.,

$$\mathcal{L}_{\textit{Indexing}}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta),$$

where θ denotes the model parameters, and $P(id \mid d; \theta)$ is the likelihood of each docid id given the document d

Retrieval: Formulation

Given:

- A query set Q;
- A set of relevant docids I_Q ;

Retrieval: Formulation

Given:

- A query set Q;
- A set of relevant docids I_Q ;

The retrieval task aims to generate a ranked list of relevant docids $id^q \in I_Q$ in response to a query $q \in Q$ with the indexed information, i.e.,

$$\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta),$$

where $P(id^q \mid q; \theta)$ is the likelihood of each relevant docid id^q given the query q

Training

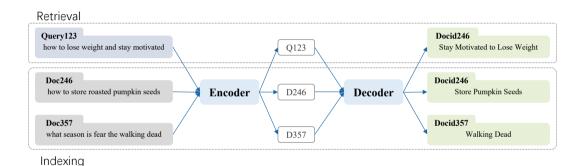
Following the above two basic operations, i.e., indexing and retrieval, a single model can be optimized directly in an end-to-end manner towards a global objective,

Training

Following the above two basic operations, i.e., indexing and retrieval, a single model can be optimized directly in an end-to-end manner towards a global objective,

$$\mathcal{L}_{\textit{Global}}(\textit{Q}, \textit{D}, \textit{I}_{\textit{D}}, \textit{I}_{\textit{Q}}; \theta) = \mathcal{L}_{\textit{Indexing}}(\textit{D}, \textit{I}_{\textit{D}}; \theta) + \mathcal{L}_{\textit{Retrieval}}(\textit{Q}, \textit{I}_{\textit{Q}}; \theta)$$

Training: An example



Joint learning the indexing and retrieval tasks

Inference

• Once such a GR model is learned, it can be used to generate candidate docids for a test query q_t , all within a single, unified model,

$$w_t = GR_{\theta}(q_t, w_0, w_1, \ldots, w_{t-1}),$$

where w_t is the t-th token in the docid string and the generation stops when decoding a special EOS token

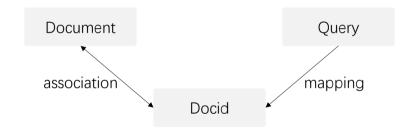
Inference

 Once such a GR model is learned, it can be used to generate candidate docids for a test query q_t, all within a single, unified model,

$$w_t = GR_{\theta}(q_t, w_0, w_1, \ldots, w_{t-1}),$$

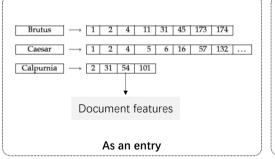
where w_t is the t-th token in the docid string and the generation stops when decoding a special EOS token

 The docids generated with the top-K highest likelihood (joint probability of generated tokens within a docid) form a ranking list in descending order

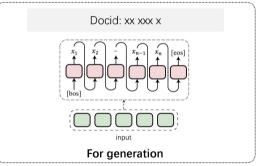


Unfortunately, there is no natural identifier for each document!

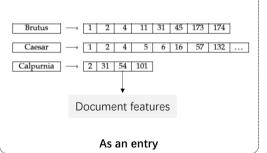
Traditional information retrieval



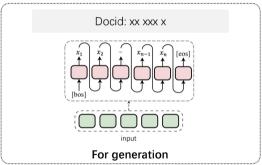
Generative retrieval



Traditional information retrieval

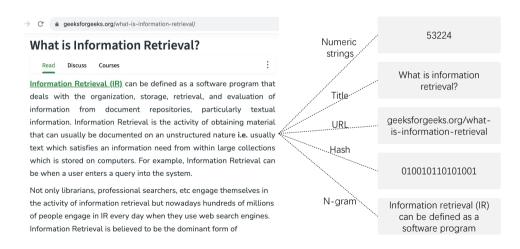


Generative retrieval



How to design docids for documents?

• Possible design choices



• Shall we use randomized numbers or codes as docids?

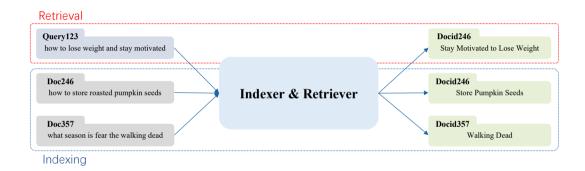
- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?

- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?
- Would the choices of different docids affect the model performance (e.g., effectiveness, capacity, etc.)?
 - Long (e.g., 728 hash code) vs. Short docids (e.g., n-grams)
 - Single (e.g., title or URL) vs. Multiple docids (e.g., multiple keywords)

- Shall we use randomized numbers or codes as docids?
- If not, how to obtain proper identifiers for documents?
 - Titles, URLs or ?
- Would the choices of different docids affect the model performance (e.g., effectiveness, capacity, etc.)?
 - Long (e.g., 728 hash code) vs. Short docids (e.g., n-grams)
 - Single (e.g., title or URL) vs. Multiple docids (e.g., multiple keywords)

We will tackle these questions in Section 3!

Research questions (2): Training approaches



Joint learning process of the indexing and retrieval tasks

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data

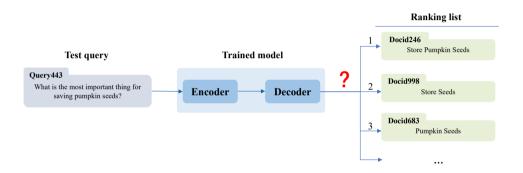
- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives
- How to handle a dynamically evolving document collection?
 - Internal index: model parameters
 - High computational costs: re-training from scratch every time the underlying corpus is updated

- How to memorize the whole corpus effectively and efficiently?
 - Rich information in documents
 - Limited labeled data
- How to learn heterogeneous tasks well within a single model?
 - Different data distributions
 - Different optimization objectives
- How to handle a dynamically evolving document collection?
 - Internal index: model parameters
 - High computational costs: re-training from scratch every time the underlying corpus is updated

We will tackle these questions in Section 4!

Research questions (3): Inference strategies



The generation process is different from general language generation

- How to generate valid docids?
 - Limited docids vs. free generation

- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents

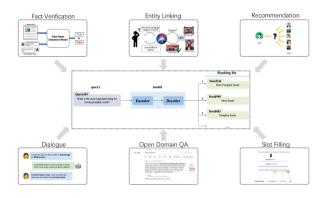
- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents
- How to generate a ranked list of docids for a query?
 - One-by-one generation: likelihood probabilities
 - One-time generation: directly decoding a sequence of docids

- How to generate valid docids?
 - Limited docids vs. free generation
- How to organize the docids for large scale corpus?
 - Data structure for docids over millions of documents
- How to generate a ranked list of docids for a query?
 - One-by-one generation: likelihood probabilities
 - One-time generation: directly decoding a sequence of docids

We will tackle these questions in Section 5!

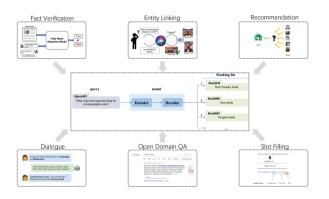
Research questions (4): Applications

How to employ generative retrieval models in different downstream tasks?



Research questions (4): Applications

How to employ generative retrieval models in different downstream tasks?



We will tackle this question in Section 6!

Section 3: Docid design

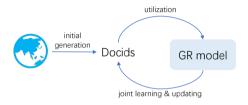
- Shall we use randomize numbers as the docids?
- If not, how to construct proper docids for the documents?
- Would the choices of different docids affect the model performance (effectiveness, capacity, etc.)?

Categorization of docids

• Pre-defined static docids

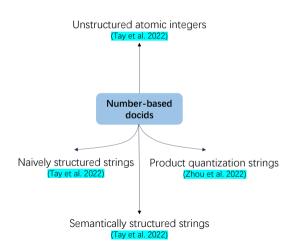
Categorization of docids

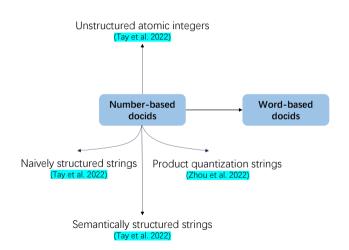
Pre-defined static docids

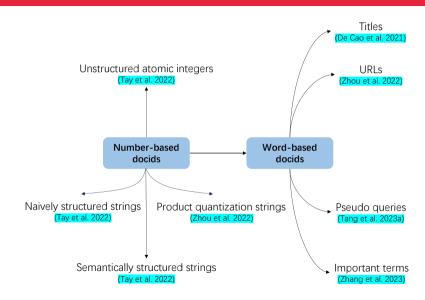


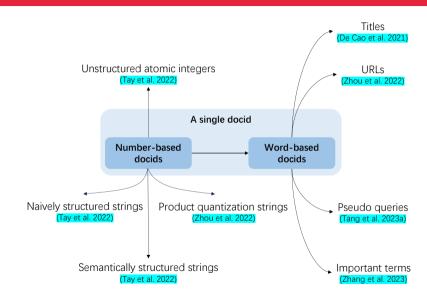
Learnable docids

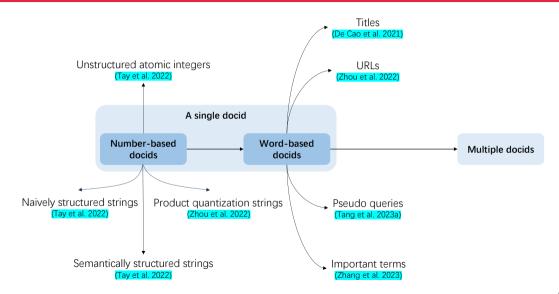
Number-based docids



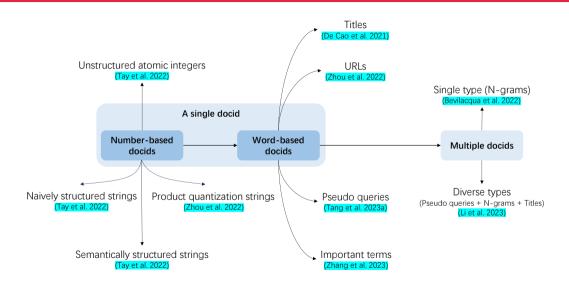




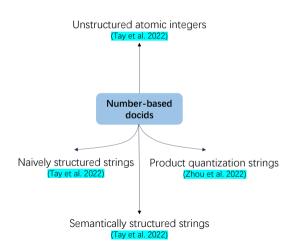




Roadmap of pre-defined static docids



A single docid: Number-based



ce: [Tay et al., 2022]

• An arbitrary (and possibly random) unique integer identifier

Number-based: Unstructured atomic integers

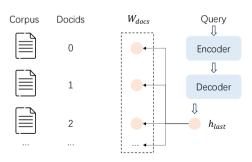
urce: [Tay et al., 2022

Number-based: Unstructured atomic integers

• An arbitrary (and possibly random) unique integer identifier

Number-based: Unstructured atomic integers

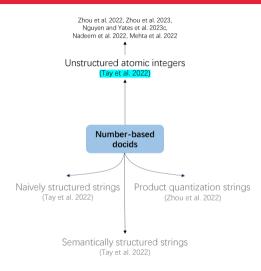
• **Decoding formulation**: learn a probability distribution over the docid embeddings, i.e., emitting one logit for each unique docid



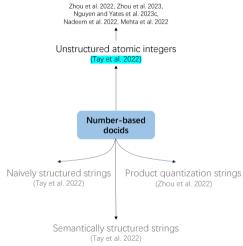
$$O = \operatorname{Softmax}([W_{docs}]^T h_{last}),$$

where $[W_{docs}]$ is the document embedding matrix, and h_{last} is the last layer's hidden state of the decoder

Unstructured atomic integers and subsequent work



Unstructured atomic integers and subsequent work



Easy to build: analogous to the output layer in standard language model

Unstructured atomic integers: obvious constraints

The need to learn embeddings for each individual docid

Unstructured atomic integers: obvious constraints

The need to learn embeddings for each individual docid

The need for the large softmax output space

Unstructured atomic integers: obvious constraints

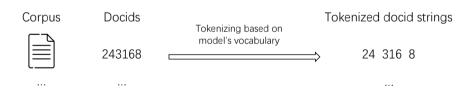
The need to learn embeddings for each individual docid

The need for the large softmax output space

It is challenging to be used on large corpora!

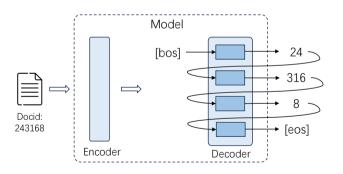
Number-based: Naively structured strings

• Treat arbitrary unique integers as tokenizable strings

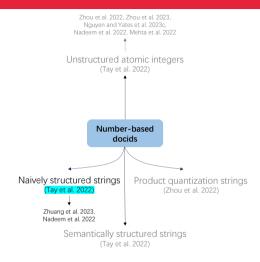


Number-based: Naively structured strings

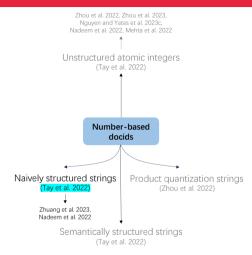
• Decoding formulation: Generating a docid string in a token-by-token manner



Naively structured strings and subsequent work



Naively structured strings and subsequent work



Such a way frees the limitation for the **corpus size** that comes with unstructured atomic docid

Naively structured strings: obvious constraints

Identifiers are assigned in an arbitrary manner

Naively structured strings: obvious constraints

Identifiers are assigned in an arbitrary manner

The docid space lacks semantic structure

ce: [Tay et al., 2022

Number-based: Semantically structured strings

Properties:

• The docid should capture some information about the semantics of its associated document

Number-based: Semantically structured strings

Properties:

- The docid should capture some information about the semantics of its associated document
- The docid should be structured in a way that the search space is effectively reduced after each decoding step

Number-based: Semantically structured strings

Properties:

- The docid should capture some information about the semantics of its associated document
- The docid should be structured in a way that the search space is effectively reduced after each decoding step

Semantically similar documents share identifier prefixes

ce: [Tay et al., 2022]

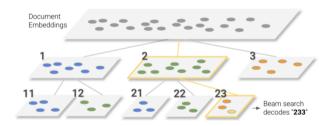
• A hierarchical clustering algorithm over document embeddings to induce a decimal tree

Number-based: Semantically structured strings

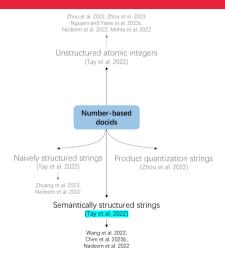
urce: [Tay et al., 202

Number-based: Semantically structured strings

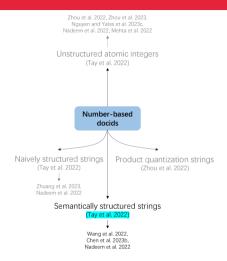
 A hierarchical clustering algorithm over document embeddings to induce a decimal tree



Semantically structured strings and subsequent work

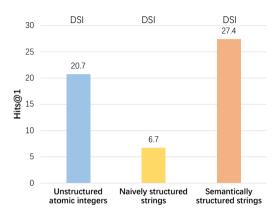


Semantically structured strings and subsequent work



The document semantics can be incorporated in the decoding process It is not limited by the size of the corpus

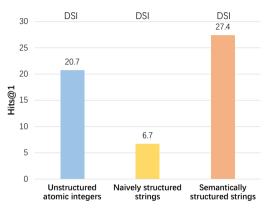
Performance comparisons [Tay et al., 2022]



Natural Questions 320K

- Backbone: T5-base
- Observations: imbuing the docid space with semantic structure can lead to better retrieval capabilities

Performance comparisons [Tay et al., 2022]



- Backbone: T5-base
- Observations: imbuing the docid space with semantic structure can lead to better retrieval capabilities

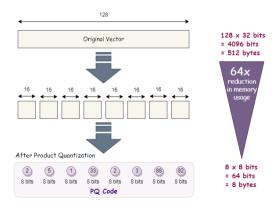
Natural Questions 320K

This is only about "identifiers"

Later sections will discuss the performance compared to traditional IR models

• Product quantization (PQ) is a technique used for vector compression

- Product quantization (PQ) is a technique used for vector compression
- An original vector is represented by a short code composed of its subspace quantization indices



Given all D-dimensional embedding vectors of documents [Zhou et al., 2022],

Given all D-dimensional embedding vectors of documents [Zhou et al., 2022],

• Divide the *D*-dimensional space into *m* groups

Given all D-dimensional embedding vectors of documents [Zhou et al., 2022],

- Divide the *D*-dimensional space into *m* groups
- Perform K-means clustering on each group to obtain k cluster centers

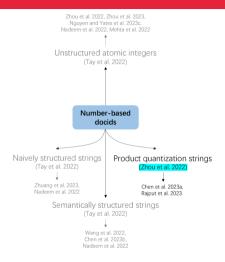
Given all D-dimensional embedding vectors of documents [Zhou et al., 2022],

- Divide the *D*-dimensional space into *m* groups
- Perform K-means clustering on each group to obtain k cluster centers
- Each embedding vector can be represented as a set of m cluster identifiers. For each document d, its product quantization string identifier id_{PQ} can be defined,

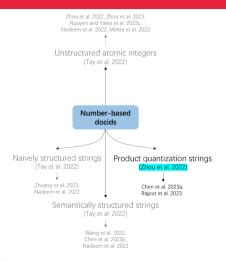
$$id_{PQ} = PQ(Encoder(d)),$$

where $Encoder(\cdot)$ can be implemented by different language models

Product quantization strings and subsequent work

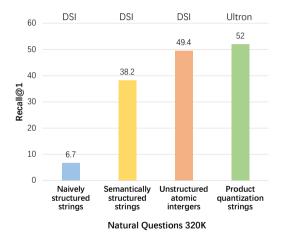


Product quantization strings and subsequent work



Preserving dense vector semantics in a smaller space

Capturing local semantic information



• Backbone: T5-base

 Observations: Product quantization string identifiers improves over structured semantic identifiers

Number-based docids: Summary

Docids based on integers are easy to build

Number-based docids: Summary

Docids based on integers are easy to build

Unstructured atomic integers and naively/semantically structured strings can maintain uniqueness

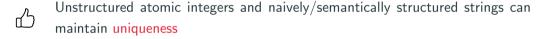
Number-based docids: Summary

Unstructured atomic integers and naively/semantically structured strings can maintain uniqueness

Number-based docids are composed of unreadable numbers

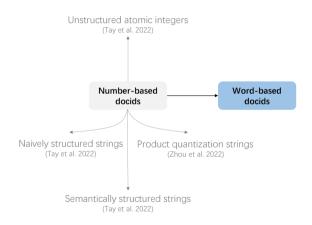
Number-based docids: Summary

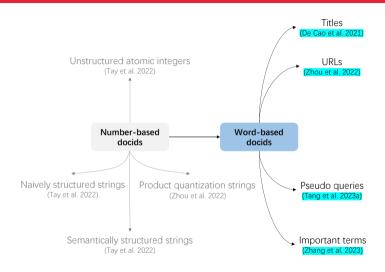
∏



Number-based docids are composed of unreadable numbers

It is challenging to interpret the model's understanding of the corpus





The fundamental inspiration

• The query is usually keyword-based natural language, which can be challenging to map into a numeric string, while mapping it to words would be more intuitive

The fundamental inspiration

- The query is usually keyword-based natural language, which can be challenging to map into a numeric string, while mapping it to words would be more intuitive
- Elaboration Strategies in human learning encoding and recall for humans: natural language vs. integer-based strings

• Document titles: be able to summarize the main content

• Document titles: be able to summarize the main content

Information retrieval Decoding target Article Talk From Wikipedia, the free encyclopedia Information retrieval (IR) in computing and information science is the process of obtaining information system resources that are relevant to an information need from a collection of those resources. Searches can be based on full-text or other content-based indexing. Information retrieval is the science[1] of searching for information in a document, searching for documents themselves, and also searching for the metadata that describes data, and for databases of texts, images or sounds. Automated information retrieval systems are used to reduce what has been called information overload. An IR system is a software system that provides access to books, journals and other documents; it also stores and manages those documents. Web search engines are the most visible IR applications.

Chiamaka Nnadozie's father didn't want her to play soccer. Nigerian star defied him and rewrote the record books

By Michael Johnston and Amanda Davies, CNN Decoding target

⊕ 5 minute read · Updated 10:06 AM EDT, Wed November 1, 2023

(CNN) — It wasn't always plain sailing for Paris FC and Nigerian goalkeeper, Chiamaka Nnadozie, throughout her now-flourishing career.

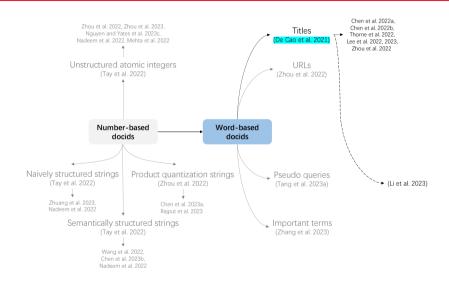
Growing up in a family of boys and men – who had all tried their hand at going professional – Nnadozie's ambition to follow suit wasn't greeted with unyielding enthusiasm. Quite the opposite.

"it wasn't very good from my family. They never let me play, especially my dad," the 22-year-old told CNN's Amanda Davies.

"Whenever I went to play soccer, he would always tell me: 'Girls don't play football. Look at me. I played football, I didn't make it. Your brother, he played, he didn't make Your cousin played, he didn't make it. So why do you want to choose this? Why don't you want to go to school or maybe do some other things?" Nnadozle recollected.

[&]quot;Autoregressive Entity Retrieval". De Cao et al. [2021]

Titles and subsequent work



Titles: Obvious constraints

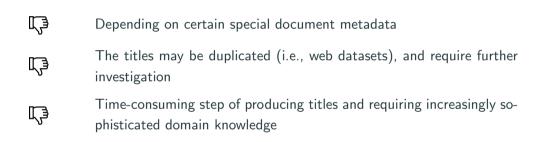
Depending on certain special document metadata

Titles: Obvious constraints

Depending on certain special document metadata

The titles may be duplicated (i.e., web datasets), and require further investigation

Titles: Obvious constraints



For a while, mainly evaluated on Wikipedia-based tasks (with well-written titles)!

Wikipedia-based tasks

Fact Verification

De Cao et al. 2021, Chen et al. 2022b, Chen et al. 2022a, Thorne et al. 2022, Lee et al. 2023

Entity Linking

De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Slot Filling

De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Open Domain QA

De Cao et al. 2021, Chen et al. 2022b, Zhou et al. 2022, Lee et al. 2023

Dialogue

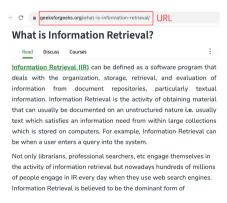
De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Multi-hop retrieval

Lee et al. 2022

• The URL of a document contains certain semantic information and can uniquely correspond to this document

 The URL of a document contains certain semantic information and can uniquely correspond to this document



• Ren et al. [2023] solely utilized tokenized URLs as the identifier

- Ren et al. [2023] solely utilized tokenized URLs as the identifier
- The tokenized symbols of URLs are well aligned with the vocabulary of the generative language model, thereby enhancing the generative capacity

• However, not all URLs provide sufficient semantic information

- However, not all URLs provide sufficient semantic information
- Zhou et al. [2022] proposed to combine the URL and the document title as docids to guarantee both the uniqueness and semantics of the identifiers

- However, not all URLs provide sufficient semantic information
- Zhou et al. [2022] proposed to combine the URL and the document title as docids to guarantee both the uniqueness and semantics of the identifiers

For a while, mainly evaluated on Web search datasets (with available URLs)!

Web search datasets

MS MARCO

Nguyen et al. 2016

Robust04

Voorhees et al. 2004

Natural Questions

Kwiatkowski et al. 2019

ClueWeb09-B

Clarke et al. 2010

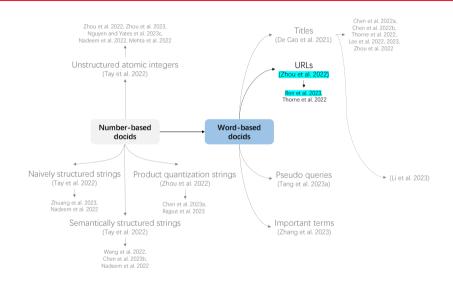
Trec-CAR

Dietz et al. 2017

Gov2

Clarke et al. 2004

URLs and subsequent work



It is necessary to design automatic docid generation techniques

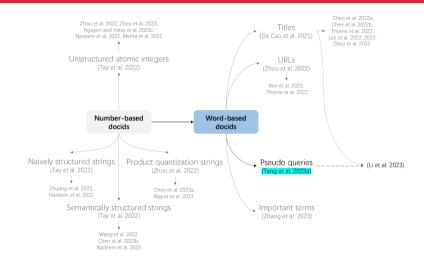
• Doc2Query technique: pseudo queries are likely to be representative or related to the contents of documents

 Doc2Query technique: pseudo queries are likely to be representative or related to the contents of documents

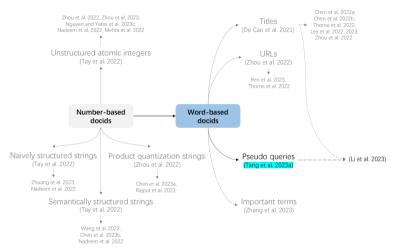
- Docid repetition problem
 - Tang et al. [2023a] uses the top 1 generated query as the docid for each document
 - Based on statistics, about 5% and 3% docids of documents are not unique in MS MARCO and Natural questions datasets, respectively
 - It is reasonable that different documents may share the same docid if they share very similar essential information

- Docid repetition problem
 - Tang et al. [2023a] uses the top 1 generated query as the docid for each document
 - Based on statistics, about 5% and 3% docids of documents are not unique in MS MARCO and Natural questions datasets, respectively
 - It is reasonable that different documents may share the same docid if they share very similar essential information
- Countermeasure
 - If a docid corresponds to multiple documents, return all of them in a random order, while keeping the relative order of documents corresponding to other docids

Pseudo queries and subsequent work



Pseudo queries and subsequent work



Without the requirements of certain document metadata, e.g., titles and URLs

Titles, URLs and pseudo queries:

Titles, URLs and pseudo queries:

• One pre-defined sequence

Titles, URLs and pseudo queries:

- One pre-defined sequence
- The requirement for the exact generation

Titles, URLs and pseudo queries:

- One pre-defined sequence
- The requirement for the exact generation
- The targeted document will be missed from the retrieval result if a false prediction about its identifier is made in any step of the generation process

The permutation of docids becomes critical

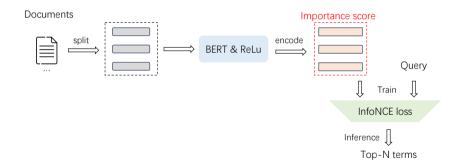
Word-based: Important terms [Zhang et al., 2023]

 Any permutation of the term set will be a valid identification for the corresponding document

Word-based: Important terms [Zhang et al., 2023]

- Any permutation of the term set will be a valid identification for the corresponding document
- Important terms: A set of document terms that have high importance scores

• Importance scores: The relevance scores of terms with respect to the query

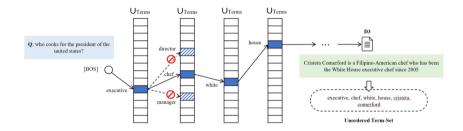


Docid repetition problem

• If the number of terms is sufficiently large, all documents within the corpus can be unique

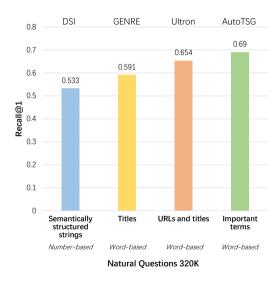
Docid repetition problem

- If the number of terms is sufficiently large, all documents within the corpus can be unique
- For a moderate-scale corpus like Natural Questions, specifying 12 terms is already sufficient to ensure uniqueness



 Any permutation of the term-set identifier will lead to the retrieval of the corresponding document

Performance comparisons



- Backbone: T5-base
- Using important term sets obtained through relevance matching as docids help represent the important information of the document
- This method also mitigates the issue of false pruning

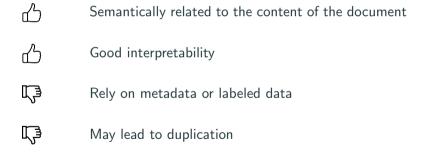
Semantically related to the content of the document

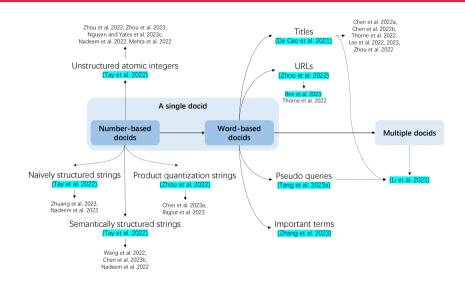
Semantically related to the content of the document

Good interpretability

Good interpretability

Rely on metadata or labeled data





The design of a single docid is relatively straightforward

The design of a single docid is relatively straightforward

The GR model may easily learn the one-to-one mapping relationship

The design of a single docid is relatively straightforward

The GR model may easily learn the one-to-one mapping relationship

Single identifiers are typically short strings, providing limited information about the document

The design of a single docid is relatively straightforward

The GR model may easily learn the one-to-one mapping relationship

Single identifiers are typically short strings, providing limited information about the document

A single type of identifier only represents a document from one view; and might be insufficient to effectively capture the entirety of the document's content

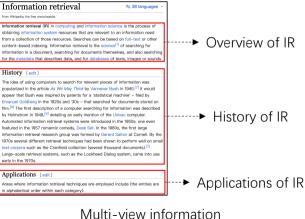
e source: Wikipedia

Multiple docids

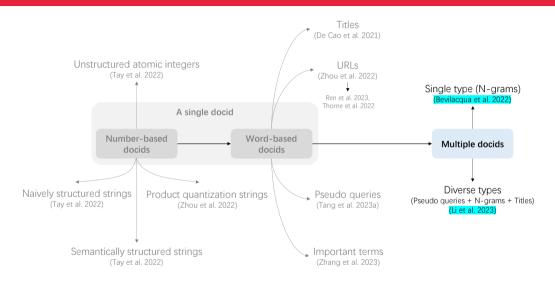
• Multiple identifiers can provide complementary information from different views

Multiple docids

Multiple identifiers can provide complementary information from different views



Multiple docids



• All n-grams (i.e., substrings) in a document are treated as its possible identifiers

- All n-grams (i.e., substrings) in a document are treated as its possible identifiers
- Part of n-grams as identifiers during training: Only the terms from the document that have a high overlap with the query are chosen as the target docids

Carbon footprint Carbon dioxide is released naturally by decomposition, ocean release and respiration. Humans contribute an n-grams increase of carbon dioxide emissions by burning fossil fuels, deforestation, and cement production. Methane (CH4) is largely released by coal, oil, and natural gas industries. Although

methane is not mass-produced like carbon dioxide, it is still very prevalent.

Docid repetition problem

• A heuristic scoring function is designed to address this during inference

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

Docid repetition problem

• A heuristic scoring function is designed to address this during inference

We will discuss this in Section 5!

Multiple docids: Single type (Important n-grams) [Chen et al., 2023b]

• The **important n-grams** occurring in a document as its identifiers

Multiple docids: Single type (Important n-grams) [Chen et al., 2023b]

- The **important n-grams** occurring in a document as its identifiers
- N-gram importance
 - Step 1: The query and its relevant document are concatenated with special delimiter tokens as a single input sequence
 - Step 2: Feed it into the original BERT model to get the [CLS] vector
 - Step 3: The token importance is computed by averaging the [CLS]-token attention weights
 - Step 4: The importance for the n-gram is the average of these tokens' importance

Single type (Important n-grams) [Chen et al., 2023b]: An example

ID for document retrieval Important n-grams

- was an American entrepreneur, industrial designer
- 2. Jobs was forced out of Apple
- 3. He died of respiratory arrest

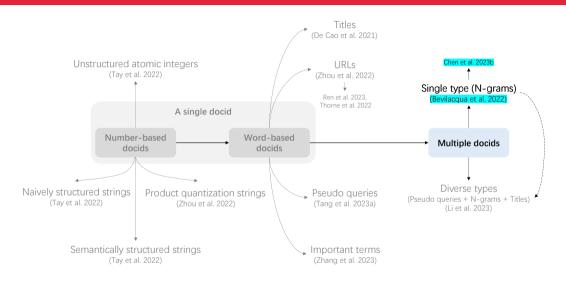
Steven Paul Jobs (February 24, 1955 – October 5, 2011) was an American entrepreneur, industrial designer, business magnate, media proprietor, and investor.

[...] In 1985, **Jobs was forced out of Apple** after a long power struggle with the company's board and its then-CEO John Sculley [...]

In 2003, Jobs was diagnosed with a pancreatic neuroendocrine tumor. *He died of respiratory arrest related* to the tumor on October 5, 2011 at the age of 56.

• Countermeasure for docid repetition problem: Similar to Bevilacqua et al. [2022]

Single type (N-grams) and subsequent work



Query: Who is the singer of does he love you?

↑Relevant

Passage (https://en.wikipedia.org/wiki/Does_He_Love_You)
"Does He Love You" is a song written by Sandy Knox and
Billy Stritch, and recorded as a duet by American country
music artists Reba McEntire and Linda Davis. It was released
in August 1993 as the first single from Reba's album
"Greatest Hits Volume Two". It is one of country music's
several songs about a love triangle. "Does He Love You" was
written in 1982 by Billy Stritch......

Multiview Identifiers

Title: Does He Love You

Substrings: "Does He Love You" is a song ..., recorded as a duet by American country music artists Reba McEntire and Linda Davis

Pseudo-queries:

Who wrote the song does he love you?

Who sings does he love you?

When was does he love you released by reba?

What is the first song in the album "Greatest Hits Volume

Two" about?

Three views of identifiers

Query: Who is the singer of does he love you?

↑Relevant

Passage (https://en.wikipedia.org/wiki/Does_He_Love_You)
"Does He Love You" is a song written by Sandy Knox and
Billy Stritch, and recorded as a duet by American country
music artists Reba McEntire and Linda Davis. It was released
in August 1993 as the first single from Reba's album
"Greatest Hits Volume Two". It is one of country music's
several songs about a love triangle. "Does He Love You" was
written in 1982 by Billy Stritch......

Multiview Identifiers

Title: Does He Love You

Substrings: "Does He Love You" is a song ..., recorded as a duet by American country music artists Reba McEntire and Linda Davis

Pseudo-queries:

Who wrote the song does he love you?

Who sings does he love you?

When was does he love you released by reba?

What is the first song in the album "Greatest Hits Volume

Two" about?

- Three views of identifiers
 - Title: Indicate the subject of a document

[&]quot;Multiview Identifiers Enhanced Generative Retrieval". Li et al. [2023]

Query: Who is the singer of does he love you?

↑Relevant

Passage (https://en.wikipedia.org/wiki/Does_He_Love_You)
"Does He Love You" is a song written by Sandy Knox and
Billy Stritch, and recorded as a duet by American country
music artists Reba McEntire and Linda Davis. It was released
in August 1993 as the first single from Reba's album
"Greatest Hits Volume Two". It is one of country music's
several songs about a love triangle. "Does He Love You" was
written in 1982 by Billy Stritch......

Multiview Identifiers

Title: Does He Love You

Substrings: "Does He Love You" is a song ..., recorded as a duet by American country music artists Reba McEntire and Linda Davis

Pseudo-queries:

Who wrote the song does he love you?

Who sings does he love you?

When was does he love you released by reba?

What is the first song in the album "Greatest Hits Volume

Two" about?

- Three views of identifiers
 - Title: Indicate the subject of a document
 - Substrings (N-grams): Be also semantically related

Query: Who is the singer of does he love you?

↑Relevant

Passage (https://en.wikipedia.org/wiki/Does_He_Love_You)
"Does He Love You" is a song written by Sandy Knox and
Billy Stritch, and recorded as a duet by American country
music artists Reba McEntire and Linda Davis. It was released
in August 1993 as the first single from Reba's album
"Greatest Hits Volume Two". It is one of country music's
several songs about a love triangle. "Does He Love You" was
written in 1982 by Billy Stritch......

Multiview Identifiers

Title: Does He Love You

Substrings: "Does He Love You" is a song ..., recorded as a duet by American country music artists Reba McEntire and Linda Davis

Pseudo-queries:

Who wrote the song does he love you?

Who sings does he love you?

When was does he love you released by reba?

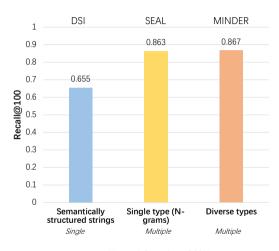
What is the first song in the album "Greatest Hits Volume

Two" about?

Three views of identifiers

- Title: Indicate the subject of a document
- Substrings (N-grams): Be also semantically related
- Pseudo-queries: Integrate multiple segments and contextualized information

Performance comparisons



Natural Questions 320K

- Backbone: BART-large
- Results: Using multiple docids for a document yields better results than using a single docid

Data source: Li et al. [200

Multiple docids can provide a more comprehensive representation of the document, assisting the model in gaining a multifaceted understanding

Multiple docids can provide a more comprehensive representation of the document, assisting the model in gaining a multifaceted understanding

Similar docids across different documents can reflect the similarity between the documents

Multiple docids can provide a more comprehensive representation of the document, assisting the model in gaining a multifaceted understanding

Similar docids across different documents can reflect the similarity between the documents

GR models with the increased identifier numbers demand more memory usage and inference time compared to GR models with single identifiers

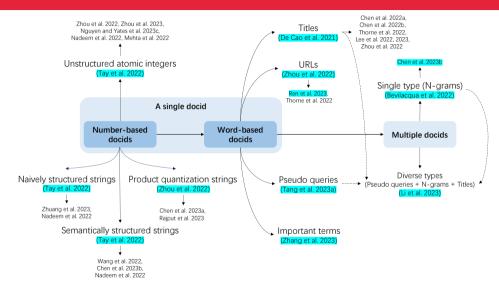
Multiple docids can provide a more comprehensive representation of the document, assisting the model in gaining a multifaceted understanding

Similar docids across different documents can reflect the similarity between the documents

GR models with the increased identifier numbers demand more memory usage and inference time compared to GR models with single identifiers

It is challenging to design discriminative multiple identifiers for a document

Pre-defined static docids: Summary



Pre-defined static docids: Summary

Docid type		Construction	Uniqueness	The degree of semantic connection to the document	Relying on labeled data	Relying on metadata
A single docid: Number-based	Unstructured atomic integers (Tay et al. 2022)	Easy	Yes	None	No	No
	Naively structured strings (Tay et al. 2022)	Easy	Yes	None	No	No
	Semantically structured strings (Tay et al. 2022)	Moderate	Yes	Weak	No	No
	Product quantization strings (Zhou et al. 2022)	Moderate	No	Moderate	No	No
A single docid: Word-based	Titles (De Cao et al. 2021)	Easy	No	Strong	No	Yes
	URLs (Zhou et al. 2022, Ren et al. 2023)	Easy	Yes	Strong	No	Yes
	Pseudo queries (Tang et al. 2023a)	Moderate	No	Strong	Yes	No
	Important terms (Zhang et al. 2023)	Hard	Yes	Strong	Yes	No
Multiple docids	Single type: N-grams (Bevilacqua et al. 2022)	Easy	No	Moderate	No	No
	Diverse types (Li et al. 2023)	Moderate	No	Strong	Yes	Yes

Pre-defined static docids: Obvious constrains

They are fixed and not learnable by training on the retrieval tasks

Pre-defined static docids: Obvious constrains

They are fixed and not learnable by training on the retrieval tasks

Not specifically optimized for retrieval tasks

Pre-defined static docids: Obvious constrains

They are fixed and not learnable by training on the retrieval tasks

Not specifically optimized for retrieval tasks

Difficult to learn semantics and relationships between documents

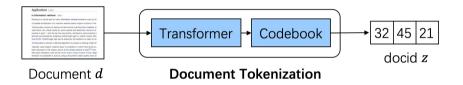
How to design learnable docids tailored for retrieval tasks?

Learnable docids

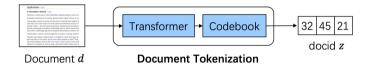
 GenRet [Sun et al., 2023] learns to tokenize documents into short discrete representations via a discrete auto-encoding, jointly training with the retrieval task

Learnable docids

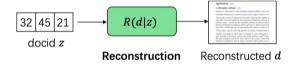
- GenRet [Sun et al., 2023] learns to tokenize documents into short discrete representations via a discrete auto-encoding, jointly training with the retrieval task
- NOVO [Wang et al., 2023] uses unique n-gram sets identifying each document and can be generated in any order and can be optimized through retrieval tasks



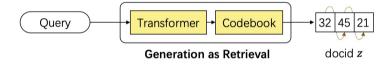
- Docid: A sequence of discrete numbers is the docid for a given document converted by a document tokenization model
- Training: Jointly training with a document tokenization task, reconstruction task and retrieval task



• Document tokenization task: Produce docids for documents



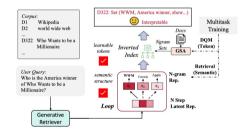
• Reconstruction task: Learn to reconstruct a document based on a docid



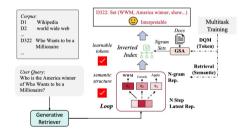
• Retrieval task: Generate relevant docids directly for a query

Docid repetition problem

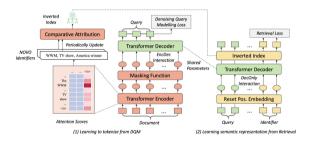
• All corresponding documents are retrieved and shuffled in an arbitrary order



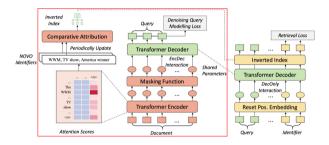
 Docid: Unique n-grams sets of the documents obtained from global self-attention



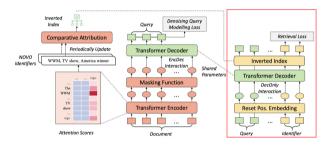
- Docid: Unique n-grams sets of the documents obtained from global self-attention
- Decoding: A document can be retrieved by generating its n-grams in the sets in any order



• Docids are learned by the denoising query modeling task and retrieval task jointly

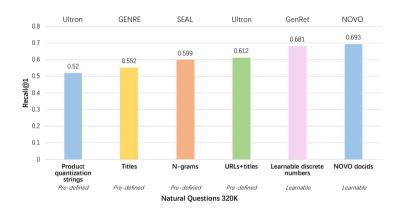


• Denoising query modeling task: By learning to generate queries with noisy documents, n-grams that are more relevant to the query are may be filtered out



 Retrieval task: The model learns the mapping from the query to relevant docids to update docid semantics

Performance comparisons



• Backbone: T5-base

 Results: Two learnable docids yields better results than partial pre-defined static docids

It can be optimized together with the ultimate goal of GR to better adapt to retrieval

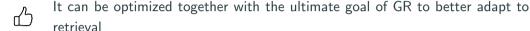
It can be optimized together with the ultimate goal of GR to better adapt to retrieval

A learnable approach can enable numerber-based docids like those in GenRet [Sun et al., 2023] to perform well

It can be optimized together with the ultimate goal of GR to better adapt to retrieval

A learnable approach can enable numerber-based docids like those in GenRet [Sun et al., 2023] to perform well

It relies on complex task design for learning



[]

A learnable approach can enable numerber-based docids like those in GenRet [Sun et al., 2023] to perform well

It relies on complex task design for learning

The learning process is complex, as docids change and require iterative learning

- Shall we use randomize numbers as the docids?
 - Random number strings can serve as docids, but their effectiveness is limited

- Shall we use randomize numbers as the docids?
 - Random number strings can serve as docids, but their effectiveness is limited
- How to construct proper docids for the documents?
 - Designing predefined or learnable docids based on the semantics of the documents

- Shall we use randomize numbers as the docids?
 - Random number strings can serve as docids, but their effectiveness is limited
- How to construct proper docids for the documents?
 - Designing predefined or learnable docids based on the semantics of the documents
- Would the choices of different docids affect the model performance(effectiveness, capacity, etc.)?
 - The length and quantity of docids both impact the effectiveness of the model's performance
 - The influence on capacity is yet to be explored

Docid type			ப	□
Pre-defined	Single	Number-based	- Simplified construction	- Low interpretability - Moderate performance
		Word-based	- High interpretability - Good performance	- Single-perspective representation of documents
	Multiple		Comprehensive document representationsBetter performance	- Slightly more complex construction
Learnable			- Adapting to GR objectives - Best performance	- Complex learning process

Docid type			பீ	C)
Pre-defined	Single	Number-based	- Simplified construction	- Low interpretability - Moderate performance
		Word-based	- High interpretability - Good performance	- Single-perspective representation of documents
	Multiple		Comprehensive document representations - Better performance	- Slightly more complex construction
Learnable			Adapting to GR objectives - Best performance	- Complex learning process

Docid type			பீ	□
Pre-defined	Single	Number-based	- Simplified construction	- Low interpretability - Moderate performance
		Word-based	- High interpretability - Good performance	- Single-perspective representation of documents
	Multiple		Comprehensive document representations - Better performance	- Slightly more complex construction
Learnable			Adapting to GR objectives - Best performance	- Complex learning process

Based on these docids Model training \rightarrow Section 4! Model inference \rightarrow Section 5!

Section 4: Training approaches

Revisit the definition of generative retrieval

GR usually exploits a Seq2Seq encoder-decoder architecture to generate a ranked list of docids for an input query, in an autoregressive fashion

Standard training objective

The common used training objective for both indexing and retrieval is maximizing likelihood estimation (MLE):

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Different learning scenarios based on the corpus

$$\mathcal{L}_{Global}(Q, \underline{D}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in \underline{D}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Different learning scenarios based on the corpus

$$\mathcal{L}_{Global}(Q, \underline{D}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in \underline{D}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

- Stationary scenarios: The document collection is fixed
- Dynamic scenarios: Information changes and new documents emerge incrementally over time

Stationary scenarios

$$\mathcal{L}_{Global}(\underline{Q}, D, I_{D}, \underline{I_{Q}}; \theta) = \mathcal{L}_{Indexing}(D, I_{D}; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, \underline{I_{Q}}; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^{q} \in I_{Q}} \log P(id^{q} \mid q; \theta)$$

According to the availability of labeled data, the training approaches in stationary scenarios can be generally classified into:

- Supervised learning methods
- Pre-training methods

Supervised learning: Basic training method

- Learn the indexing task first, and then learn retrieval tasks
 - Step 1: $\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$
 - Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$

Supervised learning: Basic training method

- Learn the indexing task first, and then learn retrieval tasks
 - Step 1: $\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$
 - Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$
- Learn indexing and retrieval tasks simultaneously in a multitask fashion

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Supervised learning: Basic training method

- Learn the indexing task first, and then learn retrieval tasks
 - Step 1: $\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid d; \theta)$
 - Step 2: $\mathcal{L}_{Retrieval}(Q, I_Q; \theta) = -\sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$
- Learn indexing and retrieval tasks simultaneously in a multitask fashion

$$\begin{aligned} \mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) &= \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta) \\ &= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta) \end{aligned}$$

Supervised learning: Multitask learning via MLE

- For a single docid representing a document
 - Indexing: Learn the relationships between document-docid pairs
 - Retrieval: Pair the query and the docid of each relevant document, and learn the relationships between query-docid pairs

Supervised learning: Multitask learning via MLE

- For a single docid representing a document
 - Indexing: Learn the relationships between document-docid pairs
 - Retrieval: Pair the query and the docid of each relevant document, and learn the relationships between query-docid pairs
- For multiple docids representing a document
 - Indexing: Pair the document and its each corresponding docid, and then learn the relationships between document-docid pairs
 - Retrieval: Pair the query and each docid of each relevant document, and learn the relationships between query-docid pairs

Limitation (1): Single document granularity

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \underbrace{\mathcal{L}_{Indexing}(D, I_D; \theta)}_{d \in D} + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Limitation (1): Single document granularity

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \underbrace{\mathcal{L}_{Indexing}(D, I_D; \theta)}_{d \in D} + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

When indexing, memorizing each document at a single granularity, e.g., first L tokens or the full text, is insufficient, especially for long documents with rich semantics.

Supervised learning: Multi-granularity enhanced

• Given a document, the important passages p and sentences s are selected to augment the indexing data

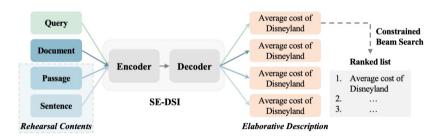
Supervised learning: Multi-granularity enhanced

 Given a document, the important passages p and sentences s are selected to augment the indexing data

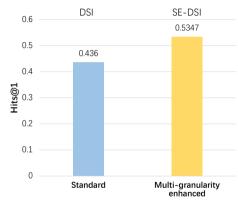
$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -(\sum_{d \in D} \log P(id \mid \mathbf{d}; \theta) + \sum_{p \in d} \log P(id \mid \mathbf{p}; \theta) + \sum_{s \in d} \log P(id \mid \mathbf{s}; \theta))$$

Supervised learning: Multi-granularity enhanced

- Leading-style: Directly use the leading passages and sentences
- Summarization-style: Leverage the document summarization technique, e.g., TextRank, to highlight important parts



Comparisons



MS MARCO 100K

- Backbone: T5-base
- Multi-granularity representations of documents can comprehensively encode the documents, and further contribute to the retrieval

Limitation (2): The gap between indexing and retrieval

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

Limitation (2): The gap between indexing and retrieval

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

Long document in indexing V.S. Short query in retrieval

Limitation (2): The gap between indexing and retrieval

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{D}, I_D; \theta) + \mathcal{L}_{Retrieval}(\underline{Q}, I_Q; \theta)$$

$$= -\sum_{d \in D} \log P(id \mid \underline{d}; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid \underline{q}; \theta)$$

Long document in indexing V.S. Short query in retrieval

The data distribution mismatch that occurs between the indexing and retrieval

Supervised learning: Pseudo query enhanced

Using a set of pseudo queries pq generated from the document as the inputs of the indexing task

Supervised learning: Pseudo query enhanced

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid \underline{\underline{d}}; \theta)$$

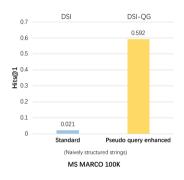
$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{pq \in D} \log P(id \mid \underline{pq}; \theta)$$

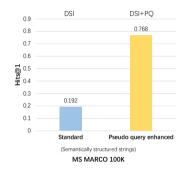
Supervised learning: Pseudo query enhanced

$$\mathcal{L}_{Indexing}(D, I_D; \theta) = -\sum_{d \in D} \log P(id \mid \underline{\underline{d}}; \theta)$$

$$\mathcal{L}_{\mathit{Indexing}}(D, I_D; \theta) = -\sum_{pq \in D} \log P(id \mid \underline{pq}; \theta)$$

$$\mathcal{L}_{\textit{Retrieval}}(\textit{Q},\textit{I}_{\textit{Q}};\theta) = -\sum_{\textit{q} \in \textit{Q}} \sum_{\textit{id}^{\textit{q}} \in \textit{I}_{\textit{Q}}} \log \textit{P}(\textit{id}^{\textit{q}} \mid \textit{q};\theta)$$





- Backbone: T5-base
- Using only pseudo synthetic queries to docid during indexing is an effective training strategy on MS MARCO [Pradeep et al., 2023]

Limitation (3): Limited labeled data

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

Limitation (3): Limited labeled data

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

What should we do if there is no or few labeled query-docid pairs?

Pre-training methods

Constructing pseudo query-docid pairs (PQ, I_Q^P) for the pre-training retrieval task

$$\mathcal{L}_{Pre-train}(PQ, D, I_D, I_Q^P; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \underbrace{\mathcal{L}_{Retrieval}(PQ, I_Q^P; \theta)}$$

Apple Inc.

Apple Inc. is an American multinational technology company that specializes in consumer electronics, software and online services. Apple is the largest information technology company by revenue [...]

Apple was founded as Apple Computer Company on April 1, 1976, by Steve Jobs, Steve Wozniak and Ronald Wayne to develop and sell Wozniak's Apple | personal computer [...] Apple went public in 1980, to instant financial success. The company developed computers featuring innovative graphical user interfaces, including the original Macintosh, announced in a critically acclaimed advertisement, "1984", directed by Ridley Scott, By 1985, the high cost of its products and power struggles between executives caused problems. Wozniak stepped back from Apple amicably, while Jobs resigned to found NeXT, taking some Apple employees with him.

[...] Apple became the first publicly traded U.S. company to be valued at over \$1 trillion in August 2018, then \$2 trillion in August 2020, and most recently \$3 trillion in January 2022. The company sometimes receives criticism regarding the labor practices of its contractors, its environmental practices, and its business ethics, including anticompetitive practices and materials sourcing. [...]

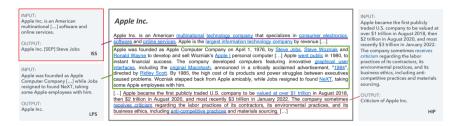
INIDIATE

Apple became the first publicly traded U.S. company to be valued at over \$1 trillion in August 2018, then \$2 trillion in August 2020, and most recently \$3 trillion in January 2022. The company sometimes receives criticism regarding the labor practices of its contractors, its environmental practices. and its business ethics, including anticompetitive practices and materials sourcing.

OUTPUT Criticism of Apple Inc.

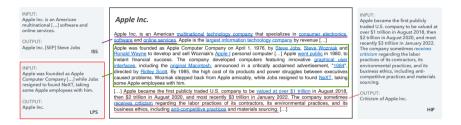
HIP

Based on Wikipedia, three pre-training retrieval tasks are constructed



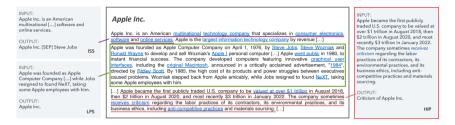
Inner Sentence Selection (ISS):

- Pseudo query (PQ): Randomly selected inner sentence from its document
- Docid (I_Q^P) : Concatenated relevant document titles, i.e., "title [SEP] title [SEP] title"



Lead Paragraph Selection (LPS):

- Pseudo query (PQ): A (lead) paragraph is sampled from the document
- Docid (I_Q^P) : Concatenated relevant document titles



Hyperlink Identifier Prediction (HIP):

- Pseudo query (*PQ*): The anchor context, i.e., the surrounding contextual information in the anchor's corresponding sentence
- Docid (I_Q^P) : The document title of the destination page

CorpusBrain [Chen et al., 2022b]: Training and inference

 Pre-training: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training

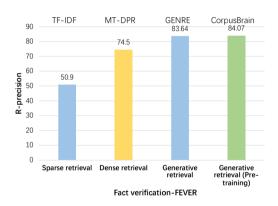
CorpusBrain [Chen et al., 2022b]: Training and inference

- Pre-training: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training
- Fine-tuning: CorpusBrain is fine-tuned using the processed data (in a Seq2Seq pair format) in downstream tasks

CorpusBrain [Chen et al., 2022b]: Training and inference

- Pre-training: Based on the three pre-training tasks, a large number of pseudo pairs of query and document identifiers are constructed. All the tasks are formulated by a standard seq2seq objective for the pre-training
- **Fine-tuning**: CorpusBrain is fine-tuned using the processed data (in a Seq2Seq pair format) in downstream tasks
- **Test**: Given a test query, the fine-tuned CorpusBrain utilizes constrained beam search to decode relevant docids

CorpusBrain [Chen et al., 2022b]: Performance



 In the KILT leaderboard, Corpusbrain achieved first place in 5 of them, second place in 1 task, and third place in 4 tasks, outperforming traditional pipelined approaches

Challenge (4): Pointwise optimization for GR

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \underbrace{\mathcal{L}_{Retrieval}(Q, I_Q; \theta)}_{q \in Q}$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

Challenge (4): Pointwise optimization for GR

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \underbrace{\mathcal{L}_{Retrieval}(Q, I_Q; \theta)}_{q \in Q}$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

- It assumes the likelihood for each relevant docid is independent of the other docids in the list for a query
- Ranking is a prediction task on list of objects

Challenge (4): Pointwise optimization for GR

$$\mathcal{L}_{Global}(Q, D, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(D, I_D; \theta) + \underbrace{\mathcal{L}_{Retrieval}(Q, I_Q; \theta)}_{q \in Q}$$

$$= -\sum_{d \in D} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

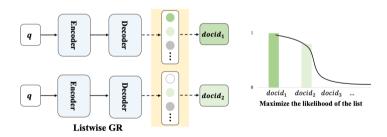
- It assumes the likelihood for each relevant docid is independent of the other docids in the list for a query
- Ranking is a prediction task on list of objects

Listwise optimization for GR is necessary!

Listwise optimization for GR [Tang et al., 2023b]

Training with position-aware ListMLE

• View the docid ranking problem as a sequential learning process, with each step targeting to maximize the corresponding stepwise probability distribution



Listwise optimization for GR [Tang et al., 2023b]

Given:

- A query q
- Its ground-truth docid list $\pi_q = [id^{(1)}, id^{(2)}, \ldots]$, in descending order of relevance, where $id^{(1)}$ is the docid ranked at the first position, and $id^{(2)}$ is the docid ranked at the second position, and so on

Sequential learning process

Step 1: Maximize the following top-1 positional conditional probability:

$$P(id^{(1)} \mid q; \theta) = \frac{\exp(\tilde{P}(id^{(1)} \mid q; \theta))}{\sum_{j=1}^{n} \exp(\tilde{P}(id^{(j)} \mid q; \theta))},$$

where $\tilde{P}(id^{(i)} \mid q; \theta) = \frac{\log P(id^{(i)} \mid q; \theta)}{|id^{(i)}|}$, and $P(id^{(i)} \mid q; \theta)$ is the generated likelihood of the *i*-th relevant docid $id^{(i)}$ for q

Sequential learning process

Step 2: For i = 2, ..., n, maximize the following i-th positional conditional probability given the preceding top i - 1 docids,

$$P(id^{(i)} \mid q, id^{(1)}, \dots, id^{(i-1)}; \theta) = \frac{\exp(\tilde{P}(id^{(i)} \mid q; \theta))}{\sum_{j=i}^{n} \exp(\tilde{P}(id^{(j)} \mid q; \theta))}$$

The learning process ends at step n+1

Listwise loss with position importance

• Listwise probability with position importance

$$\min_{\theta} - \log P(\pi_q \mid q; \theta)
= -\alpha(1) \log P(id^{(1)} \mid q; \theta) - \sum_{i=2}^{n} \alpha(i) \log P(id^{(i)} \mid q, id^{(1)}, \dots, id^{(i-1)}; \theta),$$

where the weight $\alpha(\cdot)$ is a decreasing function

• Listwise loss function incorporating the probability based on Plackett-Luce model

$$\mathcal{L}_{List}(q, \pi_q; \theta) = \sum_{i=1}^{n} \alpha(i) \left(-\tilde{P}(id^{(i)} \mid q; \theta) + \log \left(\sum_{k=i}^{n} \exp(\tilde{P}(id^{(k)} \mid q; \theta)) \right) \right)$$

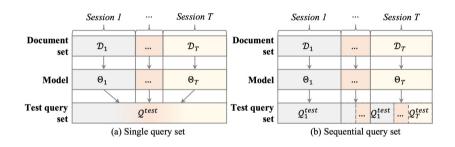
Dynamic scenarios

$$\mathcal{L}_{Global}(Q, \underline{\underline{D}}, I_D, I_Q; \theta) = \mathcal{L}_{Indexing}(\underline{\underline{D}}, I_D; \theta) + \mathcal{L}_{Retrieval}(Q, I_Q; \theta)$$

$$= -\sum_{d \in \underline{\underline{D}}} \log P(id \mid d; \theta) - \sum_{q \in Q} \sum_{id^q \in I_Q} \log P(id^q \mid q; \theta)$$

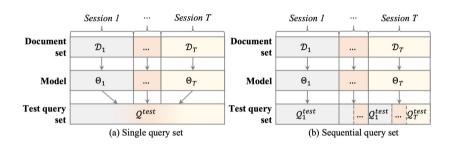
Information changes and new documents emerge incrementally over time

Continual learning task: Formulation



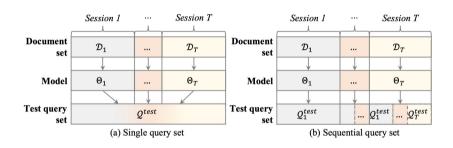
• Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs

Continual learning task: Formulation



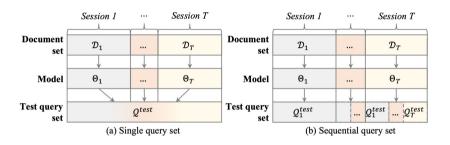
- Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs
- New datasets: T new datasets D_1, \ldots, D_T , from T sessions arriving in a sequential manner, which are only composed of newly encountered documents without queries related to these documents

Continual learning task: Formulation



- Initial model: A large-scale base document set D_0 and sufficiently many labeled query-document pairs
- New datasets: T new datasets D_1, \ldots, D_T , from T sessions arriving in a sequential manner, which are only composed of newly encountered documents without queries related to these documents
- **Model update**: The new dataset D_t and previous datasets D_0, \ldots, D_{t-1}

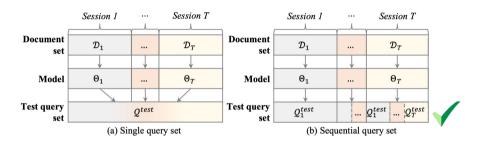
Continual learning task: Evaluation



Two types of test query set for performance evaluation:

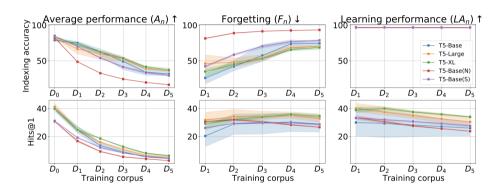
- **Single query set**: There is only one test query set, and their relevant documents arrive in different sessions
- **Sequential query set**: The test query set is specific for each session, and the relevant documents appear in existing sessions

Continual learning task: Evaluation



Two types of test query set for performance evaluation:

- **Single query set**: There is only one test query set, and their relevant documents arrive in different sessions
- **Sequential query set**: The test query set is specific for each session, and the relevant documents appear in existing sessions



The GR model undergoes severe forgetting under continual indexing of new documents

Challenges of continual learning for GR

 How to incrementally index new documents with low computational and memory costs?

Challenges of continual learning for GR

- How to incrementally index new documents with low computational and memory costs?
- How to prevent catastrophic forgetting for previously indexed documents and maintain the retrieval ability?

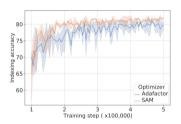
DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

 Docids: The new documents are assigned unstructured atomic integers as docids, and the GR model learns new embeddings for each of them

DSI++ [Mehta et al., 2022]: Incrementally indexing new documents

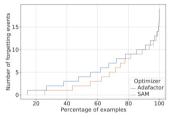
- Docids: The new documents are assigned unstructured atomic integers as docids, and the GR model learns new embeddings for each of them
- Modifying the training dynamics: Since flatter minima implicitly alleviate forgetting, optimizing for flatter loss basins using Sharpness-Aware Minimization (SAM) as an objective allows the model to stably memorize more documents

DSI++ [Mehta et al., 2022]: Incrementally indexing new documents



(a) Indexing accuracy during memorization

 SAM outperforms Adafactor in terms of the overall indexing accuracy



(b) Cumulative histogram of forgetting events

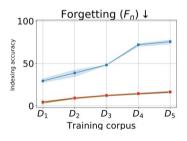
 SAM undergoes less severe fluctuations during the course of training

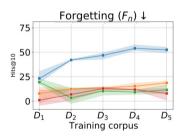
DSI++ [Mehta et al., 2022]: Preventing catastrophic forgetting

 Generative memory: Train a query generator model to sample pseudo-queries for previously seen documents and supplement the query-docid pairs during continual indexing

DSI++ [Mehta et al., 2022]: Preventing catastrophic forgetting

- Generative memory: Train a query generator model to sample pseudo-queries for previously seen documents and supplement the query-docid pairs during continual indexing
- \bullet It reduces the forgetting, and improves average Hits@10 by +21.1% over baselines





Limitations of DSI++

 Learning embeddings for each individual new docid from scratch incurs prohibitively high computational costs

Limitations of DSI++

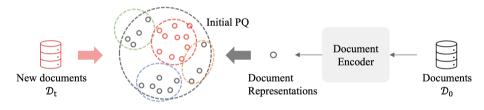
- Learning embeddings for each individual new docid from scratch incurs prohibitively high computational costs
- The relationships between new and old documents may not be easily obtained from randomly-selected exemplars

CLEVER [Chen et al., 2023a]: Incrementally indexing new documents

Incremental product quantization (PQ) codes as identifiers: Update a partial quantization codebook according to two adaptive thresholds

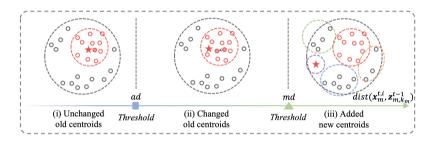
CLEVER [Chen et al., 2023a]: Incrementally indexing new documents

Incremental product quantization (PQ) codes as identifiers: Update a partial quantization codebook according to two adaptive thresholds



- Build base PQ
 - Centroids are obtained via clustering over document representations
 - Document representations are learned with a bootstrapped training process

CLEVER [Chen et al., 2023a]: Incremental product quantization



Update adaptively

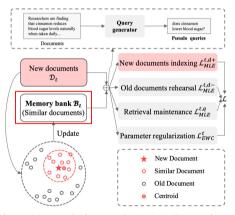
- Dynamic thresholds: Average distance (ad); maximum distance (md)
- Three types of update for centroid representation: Depend on contributions to centroid update

CLEVER [Chen et al., 2023a]: Preventing catastrophic forgetting

Memory-augmented learning mechanism: Form meaningful connections between old and new documents

CLEVER [Chen et al., 2023a]: Preventing catastrophic forgetting

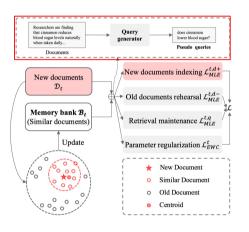
Memory-augmented learning mechanism: Form meaningful connections between old and new documents



 Dynamic memory bank: Construct a memory bank with similar documents for each new session and replay the process of indexing them alongside the indexing of new documents

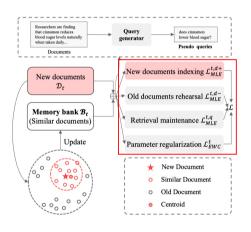
[&]quot;Continual Learning for Generative Retrieval over Dynamic Corpora". Chen et al. [2023a]

CLEVER [Chen et al., 2023a]: Memory-augmented learning mechanism



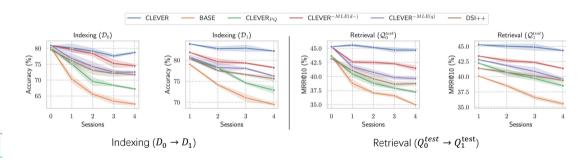
 Pseudo query-docid pairs: Train a query generator model to sample pseudo-queries for documents and supplement the query-docid pairs during indexing

CLEVER [Chen et al., 2023a]: Memory-augmented learning mechanism



 Sequentially training: new documents indexing, old document rehearsal, retrieval maintenance losses and an elastic weight consolidation (EWC) loss as a regularization term

CLEVER [Chen et al., 2023a]: Performance



 CLEVER almost avoids catastrophic forgetting on both indexing and retrieval tasks, showing its effectiveness in a dynamic setting

A look back

Training approaches			பீ	□
Standard approach (Tay et al. 2022)			- Simple	- Moderate performance
Stationary	Multi-granularity enhanced (Tang et al. 2023a)		- Enhancing the memorization ability	- Requiring extra tools for selecting important paragraphs or sentences
	Pseudo query enhanced (Zhuang et al. 2023)		- Reducing the gap between training and inference	- Depending on labeled data
	Pre-training based (Chen et al. 2022b)		- Addressing the issue of no or limited labeled data	- Depending on the quality of pre- training corpora and task design
Dynamic	DSI++ (Mehta et al. 2022)	Unstructured atomic integers	- Simple design	- High computational cost
		Experience replay	- Good performance	- Difficult to capture the relationship between old and new corpora
	CLEVER (Chen et al. 2023a)	Incremental product quantization	- High efficiency	- More complicated docid implementation
		Memory- augmented learning	Better at capturing the relationship between old and new corpora Better performance	- Extra memory bank

• How to memorize the whole corpus effectively and efficiently?

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input
- How to handle a dynamically evolving document collection?

- How to memorize the whole corpus effectively and efficiently?
 - Multi-granularity enhanced document content
 - Pre-training
 - Listwise optimization
- How to learn heterogeneous tasks well within a single model?
 - Pseudo query enhanced input
- How to handle a dynamically evolving document collection?
 - Low computational and memory costs
 - Maintaining the retrieval ability

• Binary relevance: Current relevance modeling mainly relies on MLE, struggling with real-world annotation relevance

- Binary relevance: Current relevance modeling mainly relies on MLE, struggling with real-world annotation relevance
- Pointwise optimization: MLE is essentially a pointwise approach, and it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists

- Binary relevance: Current relevance modeling mainly relies on MLE, struggling with real-world annotation relevance
- Pointwise optimization: MLE is essentially a pointwise approach, and it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists
- Capacity: The relationships between docids and training approaches have not been systematically explored

- Binary relevance: Current relevance modeling mainly relies on MLE, struggling with real-world annotation relevance
- Pointwise optimization: MLE is essentially a pointwise approach, and it is considered sub-optimal due to its disregard for the fundamental principle that ranking involves making predictions about lists
- Capacity: The relationships between docids and training approaches have not been systematically explored

Model inference \rightarrow **Section 5!**

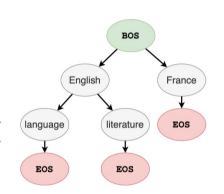
Section 5: Inference strategies

Roadmap of inference strategies

- A **single identifier** to represent a document:
 - Constrained beam search with a prefix tree
 - Constrained greedy search with the inverted index

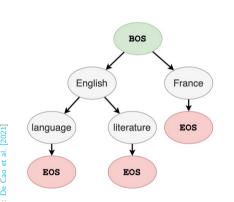
Roadmap of inference strategies

- A **single identifier** to represent a document:
 - Constrained beam search with a prefix tree
 - Constrained greedy search with the inverted index
- Multiple identifiers to represent a document
 - Constrained beam search with the FM-index
 - Scoring functions to aggregate the contributions of several identifiers



- For docids considering order of tokens
- Applicable docids: Naively structured strings, semantically structured strings, product quantization strings, titles, n-grams, URLs and pseudo queries

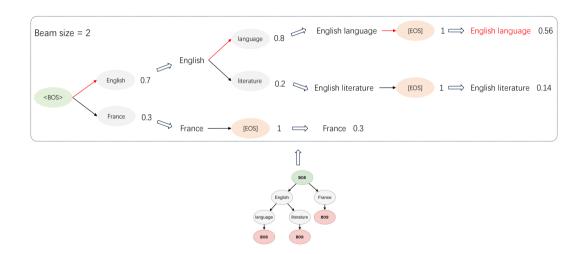
Single identifier: Constrained beam search with a prefix tree



- For docids considering order of tokens
- Applicable docids: Naively structured strings, semantically structured strings, product quantization strings, titles, n-grams, URLs and pseudo queries
- Prefix tree: Nodes are annotated with tokens from the predefined candidate set. For each node, its children indicate all the allowed continuations from the prefix defined traversing the tree from the root to it

[&]quot;Autoregressive Entity Retrieval". De Cao et al. [2021]

Example



Single identifier: Constrained greedy search with the inverted index

Applicable docids: Important terms

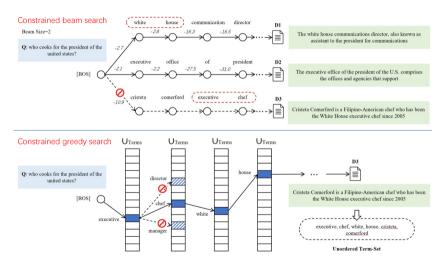
Single identifier: Constrained greedy search with the inverted index

- Applicable docids: Important terms
- Inverted index table: Enable the generation in any permutations (unordered docids) are constructed

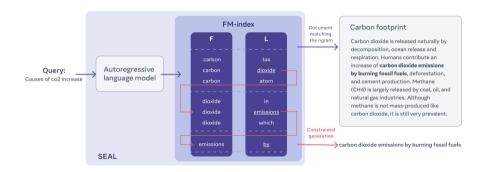
Single identifier: Constrained greedy search with the inverted index

- Applicable docids: Important terms
- Inverted index table: Enable the generation in any permutations (unordered docids) are constructed
- Generation process: The model is expected to produce docids of the highest generation likelihood. At each step of generation, the terms from the inverted index table which give rise to the top-K generation likelihood are greedily selected

Constrained beam search vs. Constrained greedy search



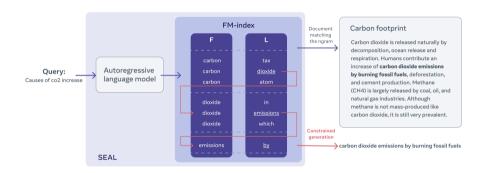
Multiple identifiers: Constrained beam search with the FM-index



Applicable docids: N-grams based docids

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

Multiple identifiers: Constrained beam search with the FM-index



- Applicable docids: N-grams based docids
- FM-index: An index combining the Burrows-Wheeler Transform (BWT) with a few small auxiliary data structures

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

FM-index

- F and L: F is an array of runs and L is the string's BWT
- Property: The relative rank of **F** and **L** stays the same; an FM-index can identify the list of possible token successors with constrained beam search

\mathbf{F}					\mathbf{L}
$\6	C	A	B	A	C^5
A^2	B	A	C	\$	C^1
A^4	C	\$	C	A	B^3
B^3	A	C	\$	C	A^2
C^5	\$	C	A	B	A^4
C^1	A	B	A	C	$\6

 Given the starting token \$, F is first used to find the contiguous range of rows corresponding to the token

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

$^{\mathbf{F}}_{\6	C	A	B	A	C^5
$\overset{\scriptscriptstyle{\Psi}}{A^2}$	$\stackrel{C}{B}$	$\stackrel{A}{A}$	C	\$	C^1
A^4	C	\$	C	$\overset{\scriptscriptstyle{0}}{A}$	B^3
B^3	A	C	\$	C	A^2
C^5	\$	C	A	B	A^4
C^1	A	B	A	C	$\6

- Given the starting token \$, F is first used to find the contiguous range of rows corresponding to the token
- 2. **L** is then used to examine the same range of rows to obtain the list of the next valid tokens

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

\mathbf{F}					\mathbf{L}
$\6	C	A	B	A	C^5
A^2	B	A	C	\$	C^1
A^4	C	\$	C	A	B^3
B^3	A	C	\$	C	A^2
C^5	\$	C	A	B	A^4
C^1	A	B	A	C	$\6

- Given the starting token \$, F is first used to find the contiguous range of rows corresponding to the token
- 2. **L** is then used to examine the same range of rows to obtain the list of the next valid tokens
- 3. The valid tokens in **F** are selected based on the same ranks in **L**.

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

\mathbf{F}					L
$\6	C	A	B	A	C^5
A^2	B	A	C	\$	C^1
A^4	C	\$	C	A	B^3
B^3	A	C	\$	C	A^2
C^5	\$	C	A	B	A^4
C^1	A	B	A	C	$\6

- Given the starting token \$, F is first used to find the contiguous range of rows corresponding to the token
- 2. **L** is then used to examine the same range of rows to obtain the list of the next valid tokens
- 3. The valid tokens in **F** are selected based on the same ranks in **L**.

By iteratively repeating the above procedure, a valid n-gram with arbitrary size can be found

[&]quot;Autoregressive Search Engines: Generating Substrings as Document Identifiers". Bevilacqua et al. [2022]

FM-index: N-gram level scores

Given an input query q, we obtain the weight of each predicted n-gram n:

$$score(n, q) = max(0, log \frac{P(n|q)(1 - P(n))}{P(n)(1 - P(n|q))}),$$

where P(n|q) is the probability of the generative model decoding n conditioned on q, and p(n) denotes the unconditional n-gram probability.

N-gram level to document level scores

How to aggregate the contribution of multiple generated n-gram identifiers to its corresponding documents?

Aggregation functions: SEAL [Bevilacqua et al., 2022]

The document-level rank score combines the n-gram level rank score score(n, q) and coverage weight cover(n, K):

$$\mathit{score}(d,q) = \sum_{n \in K^d} \mathit{score}(n,q)^{\alpha} \times \mathit{cover}(n,K),$$

where K denotes all the generated n-grams, K^d is the subset of n-grams in K that appear in d, α is a hyperparameter

Aggregation functions: SEAL [Bevilacqua et al., 2022]

For docid repetition problem

• Coverage weight cover(n, K): Avoid the overscoring of very repetitive documents, where many similar n-grams are matched

$$cover(n, K) = 1 - \beta + \beta \frac{|set(n) \setminus C(n, K)|}{|set(n)|},$$

where β is a hyperparameter, set(n) is the set of tokens in n, and C(n, K) is the union of all tokens in K with top-g highest scores

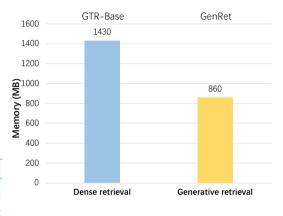
Aggregation functions: MINDER [Li et al., 2023]

The document-level rank score: Sum of the scores of its covered docid

$$score(q, d) = \sum_{i_d \in I_d} P(i_d|q),$$

where $P(i_d|q)$ is the generated likelihood score of the docid i_d of the document d. And I_d denotes the docids generated for d

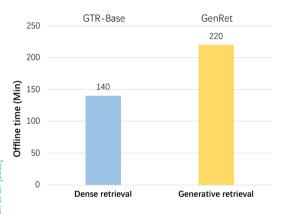
Inference efficiency: Memeory footprint



MS MARCO 300K

 The memory footprint of the GR model GenRet is smaller than that of the traditional dense retrieval method GTR, e.g., 1.6 times

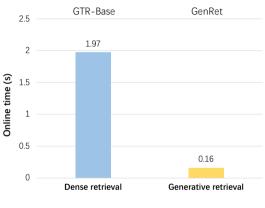
Inference efficiency: Offline latency



MS MARCO 300K

 GenRet takes a longer time for offline indexing, as the use of auxiliary models. GTR's offline time consumption comes from document encoding

Inference efficiency: Online latency



MS MARCO 300K

 Compared with the traditional dense retrieval model GTR, the GR model GenRet is faster, e.g., 12 times

A look back

Inference strategies		ப	[]	
A single	Constrained beam search with prefix tree (De Cao et al. 2021)	- Simple	- It cannot generate in an unordered manner	
docid	Constrained greedy search with inverted index (Zhang et al. 2023)	- It can generate in any permutations of docids	- It may require handling a significant amount of duplicate terms	
Constrained beam search with FM-index Multiple (Bevilacqua et al. 2022)		- It can store all the information of documents - The contributions of multiple docids comprehensively are considered	- It cannot generate in an unordered manner - Complex construction - Complex aggregation functions	
docids	Scoring functions (Li et al. 2023)	- The contributions of multiple docids comprehensively are considered - Simple aggregation functions	- Depending on design	

• How to generate valid docids?

- How to generate valid docids?
 - Constrained generation mechanism based on prefix tree, inverted index table or FM-index

- How to generate valid docids?
 - Constrained generation mechanism based on prefix tree, inverted index table or FM-index
- How to organize the docids for large scale corpus?

- How to generate valid docids?
 - Constrained generation mechanism based on prefix tree, inverted index table or FM-index
- How to organize the docids for large scale corpus?
 - Exploiting the structured docid space

- How to generate valid docids?
 - Constrained generation mechanism based on prefix tree, inverted index table or FM-index
- How to organize the docids for large scale corpus?
 - Exploiting the structured docid space
- How to generate a ranked list of docids for a query?

- How to generate valid docids?
 - Constrained generation mechanism based on prefix tree, inverted index table or FM-index
- How to organize the docids for large scale corpus?
 - Exploiting the structured docid space
- How to generate a ranked list of docids for a query?
 - One-by-one generation based on likelihood probabilities

• One-by-one generation: There are limited works on one-time generation, i.e., directly decoding a sequence of docids

- One-by-one generation: There are limited works on one-time generation, i.e., directly decoding a sequence of docids
- Dependency on prior knowledge: Some heuristic scoring functions may require prior knowledge or manually designed rules

- One-by-one generation: There are limited works on one-time generation, i.e., directly decoding a sequence of docids
- Dependency on prior knowledge: Some heuristic scoring functions may require prior knowledge or manually designed rules
- Not universally applicable: Different tasks and scenarios may require different structures to handle decoding constraints

- One-by-one generation: There are limited works on one-time generation, i.e., directly decoding a sequence of docids
- Dependency on prior knowledge: Some heuristic scoring functions may require prior knowledge or manually designed rules
- Not universally applicable: Different tasks and scenarios may require different structures to handle decoding constraints
- Large-scale corpus: Current docid space is limited to millions of documents

- One-by-one generation: There are limited works on one-time generation, i.e., directly decoding a sequence of docids
- Dependency on prior knowledge: Some heuristic scoring functions may require prior knowledge or manually designed rules
- Not universally applicable: Different tasks and scenarios may require different structures to handle decoding constraints
- Large-scale corpus: Current docid space is limited to millions of documents

Applications \rightarrow **Section 6!**

Section 6: Applications

A range of target tasks

Fact Verification

De Cao et al. 2021, Chen et al. 2022b, Chen et al. 2022a, Thorne et al. 2022, Lee et al. 2023

Open Domain QA

De Cao et al. 2021, Chen et al. 2022b, Zhou et al. 2022, Lee et al. 2023

Entity Linking

De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Knowledge-intensive language tasks

A range of target tasks

Fact Verification

De Cao et al. 2021, Chen et al. 2022b, Chen et al. 2022a, Thorne et al. 2022, Lee et al. 2023

Open Domain QA

De Cao et al. 2021, Chen et al. 2022b, Zhou et al. 2022, Lee et al. 2023

Entity Linking

De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Multi-hop retrieval

Lee et al. 2022

Recommendation

Si et al. 2023, Rajput et al. 2023

Code retrieval

Naddem et al. 2022

More retrieval tasks

A range of target tasks

Fact Verification

De Cao et al. 2021, Chen et al. 2022b, Chen et al. 2022a, Thorne et al. 2022, Lee et al. 2023

Open Domain QA

De Cao et al. 2021, Chen et al. 2022b, Zhou et al. 2022, Lee et al. 2023

Entity Linking

De Cao et al. 2021, Chen et al. 2022b, Lee et al. 2023

Multi-hop retrieval

Lee et al. 2022

Recommendation

Si et al. 2023, Rajput et al. 2023

Code retrieval

Naddem et al. 2022

Official site retrieval

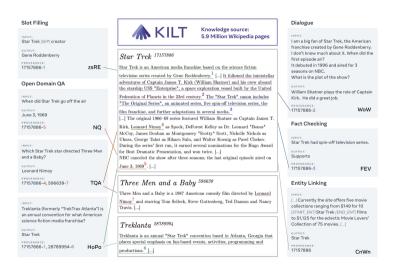
Tang et al. 2023a

Industry retrieval tasks

How to adapt a GR model for a task?

- Docid design
- Training approach
- Inference strategy

Knowledge-intensive language tasks



KILT example: GENRE [De Cao et al., 2021]

Superman saved [START] Metropolis [END]

- 1 Metropolis (comics)
- 2 Metropolis (1927 film)
- Metropolis-Hasting algorithm
 (a) Type specification.

What is the capital of Holland

- 2 Capital of the Netherlands
- 3 Holland
- (d) Entity normalization

From 1905 to 1985 Owhango had a [START] railway station [END]

- 1 Owhango railway station
- 2 Train station
- 3 Owhango
- (b) Composing from context.

Which US nuclear reactor had a major accident in 1979?

- 1 Three Mile Island accident
- 2 Nuclear reactor
- 3 Chernobyl disaster
- (e) Implicit factual knowledge.

[START] Farnese Palace [END] is one of the most important palaces in the city of Rome

- Palazzo Farnese
- 3 Palazzo della Farnesina
 - (c) Translation.

Stripes had Conrad Dunn featured in it

- Conrad Dunn
- Stripes (film)
- 3 Kris Kristofferson
 - (f) Exact copy.

- Entity retrieval: Entity disambiguation, document retrieval, and etc
- Corpus: Wikipedia
- Input: Query
- Output: Destination/ relevant pages' title

[&]quot;Autoregressive Entity Retrieval". De Cao et al. [2021]

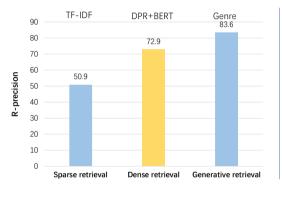
KILT example: GENRE [De Cao et al., 2021]

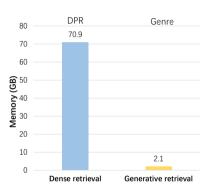
• Docid: Titles

• Training: MLE objective with document-title and query-title pairs

• Inference: Constrained beam search with a prefix tree

KILT example: GENRE [De Cao et al., 2021]





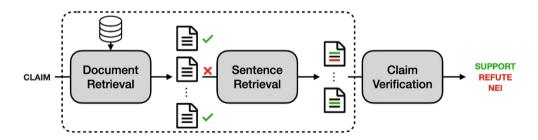
Fact verification-FEVER

Wikipedia

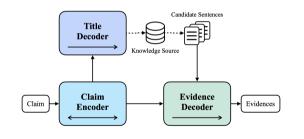
[&]quot;Autoregressive Entity Retrieval". De Cao et al. [2021]

KILT example: GERE [Chen et al., 2022a]

- Fact verification: Verify a claim using multiple evidential sentences from trustworthy corpora
 - Input: Claim
 - Output: Support/Refute/Not enough information

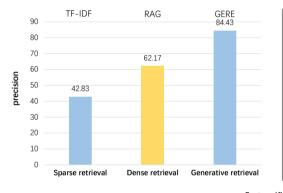


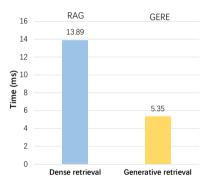
KILT example: GERE [Chen et al., 2022a]



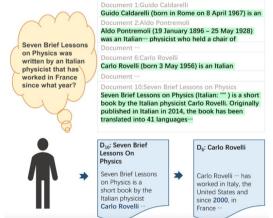
- Docid: Titles
- **Training**: MLE objective with claim-title and claim-evidence pairs
- **Inference**: Constrained beam search with a prefix tree

KILT example: GERE [Chen et al., 2022a]





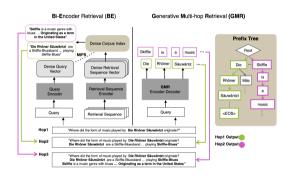
Fact verification-FEVER



Multi-hop retrieval

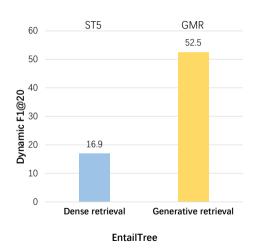
- One needs to retrieve multiple documents that together provide sufficient evidence to answer the query
- Previously retrieved items are appended to the query while iterating through multiple hops

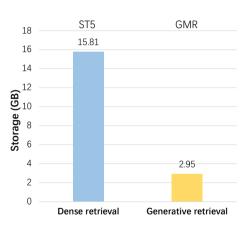
Multi-hop retrieval [Lee et al., 2022]



- Docid: Word-based answer
- Jointly training:
 - Indexing: Randomly select the first m words of the document as input and predict the remaining words with MLE
 - Retrieval: Learn pseudo query-answer pairs with MLE
- **Inference**: Constrained beam search with a prefix tree

Multi-hop retrieval [Lee et al., 2022]





HotpotQA

[&]quot;Generative multi-hop retrieval".Lee et al. [2022]

ource: Ma et al. [202

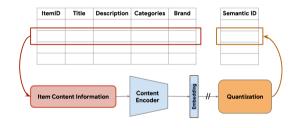
Recommendation [Rajput et al., 2023]

 Sequential recommendation: Help users discover content of interest and are ubiquitous in various recommendation domains

■ Input: User history

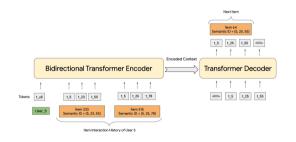
Output: Next item identifier

Recommendation [Rajput et al., 2023]



- Docid: Product quantization strings
- Docid training: Train a residual-quantized variational autoencoder model with a docid reconstruction loss and a multi-stage quantization loss

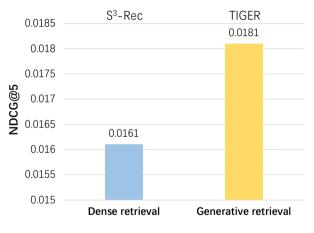
Recommendation [Rajput et al., 2023]



• Recommendation training

- Construct item sequences for every user by sorting chronologically the items they have interacted with
- Given item sequences, the recommender system's task is to predict the next item with MLE
- Inference: Beam search

Recommendation [Rajput et al., 2023]



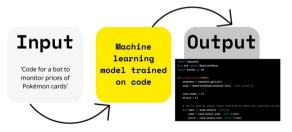
Sports and Outdoors

Code retrieval [Nadeem et al., 2022]

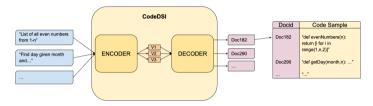
 Code retrieval: A model takes natural language queries as input and, in turn, relevant code samples from a database are returned

■ Input: Query

■ Output: Relevant code samples

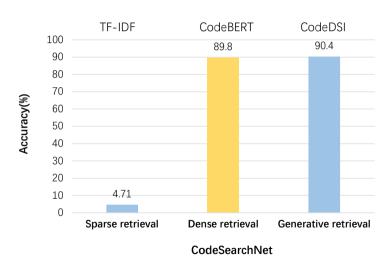


Code retrieval [Nadeem et al., 2022]



- Docid: Naively structured strings/ semantically structured strings
- Training: Standard indexing loss with code-docid pairs and retrieval loss with query-docid pairs
- Inference: Beam search

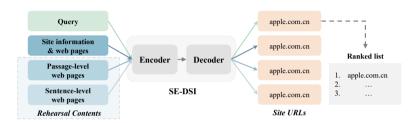
Code retrieval [Nadeem et al., 2022]



Official site retrieval [Tang et al., 2023a]

 Official sites: Web pages that have been operated by universities, departments, or other administrative units

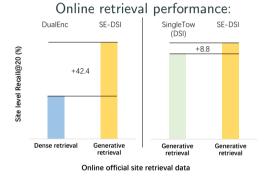
Official site retrieval [Tang et al., 2023a]



- **Docid**: Unique site URLs
- Jointly training:
 - Indexing: Learn site information (site name/ site domain/ ICP record) docid pairs, web pages-docid pairs, and important web pages-docid pairs with MLE
 - Retrieval: Learn query docid pairs with MLE
- Inference: Constrained beam search with a prefix tree

[&]quot;Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies". Tang et al. [2023a]

Official site retrieval [Tang et al., 2023a]



Inference comparison:

- Memory footprint: SE-DSI's memory is reduced by about 31 times compared to RepBERT
- Inference speed: SE-DSI's speed is significantly improved by about 2.5 times compared to RepBERT

[&]quot;Semantic-Enhanced Differentiable Search Index Inspired by Learning Strategies". Tang et al. [2023a]

Applications: limitations

- Generalizing to ultra-large-scale corpora remains a challenge
- How to adapt to the significant dynamic changes in large-scale corpora for online applications

Section 7: Challenges & Opportunities

Tutorial summary

- Definition & preliminaries
- Generative retrieval: docid design
 - Single docids: number-based and word-based identifiers
 - Multiple docids: single type and diverse types
- Generative retrieval: training approaches
 - Stationary scenarios: supervised learning and pre-training
 - Dynamic scenarios
- Generative retrieval: inference strategies
 - Single docids: constrained greedy search, constrained beam search and FM-index
 - Multiple docids: aggregation functions
- Generative retrieval: applications

Pros of generative retrieval

Information retrieval in the era of language models

Pros of generative retrieval

Information retrieval in the era of language models

- Encode the global information in corpus; optimize in an end-to-end way
- The semantic-level association extending beyond mere signal-level matching

Pros of generative retrieval

Information retrieval in the era of language models

- Encode the global information in corpus; optimize in an end-to-end way
- The semantic-level association extending beyond mere signal-level matching
- Constraint decoding over thousand-level vocabulary
- Internal index which eliminates large-scale external index

Cons of generative retrieval: Scalability

- Highly dynamic corpora
 - Document addition, removal and updates
 - How to keep such GR models up-to-date?
 - How to learn on new data without forgetting old ones?

Cons of generative retrieval: Scalability

- Highly dynamic corpora
 - Document addition, removal and updates
 - How to keep such GR models up-to-date?
 - How to learn on new data without forgetting old ones?
- Multi-modal/granularity/language search tasks
 - Different search tasks leverage very different indexes
 - How to unify different search tasks into a single generative form?
 - How to capture task specifications while obtaining the shared knowledge?

- Interpretability
 - Black-box neural models
 - How to provide credible explanation for the retrieval process and results?

- Interpretability
 - Black-box neural models
 - How to provide credible explanation for the retrieval process and results?
- Debuggable
 - Attribution analysis: how to conduct causal traceability analysis on the causes, key links and other factors of specific search results?
 - Model editing: how to accurately and conveniently modify training data or tune hyperparameters in the loss function?

- Interpretability
 - Black-box neural models
 - How to provide credible explanation for the retrieval process and results?
- Debuggable
 - Attribution analysis: how to conduct causal traceability analysis on the causes, key links and other factors of specific search results?
 - Model editing: how to accurately and conveniently modify training data or tune hyperparameters in the loss function?
- Robustness
 - When a new technique enters into the real-world application, it is critical to know not only how it works in average, but also how would it behave in abnormal situations

Cons of generative retrieval: User-centered

Searching is a socially and contextually situated activity with diverse set of goals and needs for support that must not be boiled down to a combination of text matching and text generating algorithms [Shah and Bender, 2022]

Cons of generative retrieval: User-centered

Searching is a socially and contextually situated activity with diverse set of goals and needs for support that must not be boiled down to a combination of text matching and text generating algorithms [Shah and Bender, 2022]

- Human information seeking behavior
- Transparency
- Provenance
- Accountability

So much to do ...

- Closed-book: The language model is the only source of knowledge leveraged during generation, e.g.,
 - Capturing document ids in the language models
 - Language models as retrieval agents via prompting
- Open-book: The language model can draw on external memory prior to, during and after generation, e.g.,
 - Retrieve-augmented generation of answers
 - Tool-augmented generation of answers

Cater for long-term effects

So much to do ...

 How to combine the short-term relevance goal with long-term goals such as diversity

Cater for long-term effects

So much to do ...

 How to combine the short-term relevance goal with long-term goals such as diversity

Address needs of interactive environments

- Interactive systems must operate under high degrees of uncertainty
 - User feedback, non-stationarity, exogenous factor, user preferences, . . .

Cater for long-term effects

 How to combine the short-term relevance goal with long-term goals such as diversity

Address needs of interactive environments

- Interactive systems must operate under high degrees of uncertainty
 - User feedback, non-stationarity, exogenous factor, user preferences, . . .

Searching/recommending slates of items

- Interface of many search/recommendation platforms requires showing combinations of results to users on the same page
- Different combinations may lead to different short vs. long-term outcomes
- Problem thus becomes combinatorial in nature, intractable for most applications

So much to do ...

Information retrieval meets large language models (LLMs)!

Q & A

Thank you for joining us today!

All materials are available at

https://sigir-ap2023-generative-ir.github.io/

References i

- M. Bevilacqua, G. Ottaviano, P. Lewis, W.-t. Yih, S. Riedel, and F. Petroni. Autoregressive search engines: Generating substrings as document identifiers. In *Advances in Neural Information Processing Systems*, pages 31668–31683, 2022.
- J. Chen, R. Zhang, J. Guo, Y. Fan, and X. Cheng. Gere: Generative evidence retrieval for fact verification. In *Proceedings of the 45th International ACM SIGIR Conference on Research and Development in Information Retrieval*, pages 2184–2189, 2022a.
- J. Chen, R. Zhang, J. Guo, Y. Liu, Y. Fan, and X. Cheng. Corpusbrain: Pre-train a generative retrieval model for knowledge-intensive language tasks. In *Proceedings of the 31st ACM International* Conference on Information & Knowledge Management, pages 191–200, 2022b.
- J. Chen, R. Zhang, J. Guo, M. de Rijke, W. Chen, Y. Fan, and X. Cheng. Continual learning for generative retrieval over dynamic corpora. In *Proceedings of the 32nd ACM Conference on Information and Knowledge Management*, 2023a.
- J. Chen, R. Zhang, J. Guo, M. de Rijke, Y. Liu, Y. Fan, and X. Cheng. A unified generative retriever for knowledge-intensive language tasks via prompt learning. In 46th International ACM SIGIR Conference on Research and Development in Information Retrieval, pages 1448–1457, 2023b.

References ii

- N. De Cao, G. Izacard, S. Riedel, and F. Petroni. Autoregressive entity retrieval. In *International Conference on Learning Representations*, 2021.
- R. Deffayet, T. Thonet, D. Hwang, V. Lehoux, J.-M. Renders, and M. de Rijke. Sardine: A simulator for automated recommendation in dynamic and interactive environments. *ACM Transactions on Recommender Systems*, Submitted.
- L. Heck and S. Heck. Zero-shot visual slot filling as question answering. *arXiv preprint* arXiv:2011.12340, 2020.
- J. D. M.-W. C. Kenton and L. K. Toutanova. Bert: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of NAACL-HLT*, pages 4171–4186, 2019.
- H. Lee, S. Yang, H. Oh, and M. Seo. Generative multi-hop retrieval. In *Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing*, pages 1417–1436, 2022.
- Y. Li, N. Yang, L. Wang, F. Wei, and W. Li. Multiview identifiers enhanced generative retrieval. In 61st Annual Meeting of the Association for Computational Linguistics, pages 6636–6648, 2023.
- J. Ma, T. Sun, and X. Zhang. Time highlighted multi-interest network for sequential recommendation. *Computers, Materials & Continua*, 76(3), 2023.

References iii

- S. V. Mehta, J. Gupta, Y. Tay, M. Dehghani, V. Q. Tran, J. Rao, M. Najork, E. Strubell, and D. Metzler. Dsi++: Updating transformer memory with new documents. *arXiv preprint arXiv:2212.09744*, 2022.
- D. Metzler, Y. Tay, D. Bahri, and M. Najork. Rethinking search: Making domain experts out of dilettantes. *SIGIR Forum*, 55(1):1–27, 2021.
- T. Murayama. Dataset of fake news detection and fact verification: a survey. arXiv preprint arXiv:2111.03299, 2021.
- U. Nadeem, N. Ziems, and S. Wu. Codedsi: Differentiable code search. *arXiv preprint* arXiv:2210.00328, 2022.
- M. Najork. Generative information retrieval (slides), 2023. URL https: //docs.google.com/presentation/d/191AeVzPkh20Ly855tKDkz1uv-1pHV_9GxfntiTJPUug/.
- R. Pradeep, K. Hui, J. Gupta, A. D. Lelkes, H. Zhuang, J. Lin, D. Metzler, and V. Q. Tran. How does generative retrieval scale to millions of passages? In *Gen-IR@SIGIR 2023: The First Workshop on Generative Information Retrieval*, 2023.

References iv

- S. Rajput, N. Mehta, A. Singh, R. H. Keshavan, T. Vu, L. Heldt, L. Hong, Y. Tay, V. Q. Tran, J. Samost, et al. Recommender systems with generative retrieval. *arXiv preprint arXiv:2305.05065*, 2023.
- R. Ren, W. X. Zhao, J. Liu, H. Wu, J.-R. Wen, and H. Wang. Tome: A two-stage approach for model-based retrieval. In *Proceedings of the 61st Annual Meeting of the Association for Computational Linguistics*, pages 6102–6114, 2023.
- C. Shah and E. M. Bender. Situating search. In *Proceedings of the 2022 Conference on Human Information Interaction and Retrieval*, pages 221–232, 2022.
- W. Sun, L. Yan, Z. Chen, S. Wang, H. Zhu, P. Ren, Z. Chen, D. Yin, M. de Rijke, and Z. Ren. Learning to tokenize for generative retrieval. In *Thirty-seventh Conference on Neural Information Processing Systems*, 2023.
- Y. Tang, R. Zhang, J. Guo, J. Chen, Z. Zhu, S. Wang, D. Yin, and X. Cheng. Semantic-enhanced differentiable search index inspired by learning strategies. In *29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining*, 2023a.

References v

- Y. Tang, R. Zhang, J. Guo, M. de Rijke, W. Chen, and X. Cheng. Listwise generative retrieval models via a sequential learning process. *arXiv*, 2023b. Major revision.
- Y. Tay, V. Q. Tran, M. Dehghani, J. Ni, D. Bahri, H. Mehta, Z. Qin, K. Hui, Z. Zhao, J. Gupta, T. Schuster, W. W. Cohen, and D. Metzler. Transformer memory as a differentiable search index. In Advances in Neural Information Processing Systems, volume 35, pages 21831–21843, 2022.
- Z. Wang, Y. Zhou, Y. Tu, and Z. Dou. Novo: Learnable and interpretable document identifiers for model-based ir. In *Proceedings of the 32nd ACM Conference on Information and Knowledge Management*, 2023.
- P. Zhang, Z. Liu, Y. Zhou, Z. Dou, and Z. Cao. Term-sets can be strong document identifiers for auto-regressive search engines. arXiv preprint arXiv:2305.13859, 2023.
- W. X. Zhao, K. Zhou, J. Li, T. Tang, X. Wang, Y. Hou, Y. Min, B. Zhang, J. Zhang, Z. Dong, et al. A survey of large language models. arXiv preprint arXiv:2303.18223, 2023.
- Y. Zhou, J. Yao, Z. Dou, L. Wu, P. Zhang, and J.-R. Wen. Ultron: An ultimate retriever on corpus with a model-based indexer. arXiv preprint arXiv:2208.09257, 2022.

References vi

- Y. Zhou, Z. Dou, and J.-R. Wen. Enhancing generative retrieval with reinforcement learning from relevance feedback. In *EMNLP 2023: Proceedings of the 2023 Conference on Empirical Methods in Natural Language Processing*, 2023.
- S. Zhuang, H. Ren, L. Shou, J. Pei, M. Gong, G. Zuccon, and D. Jiang. Bridging the gap between indexing and retrieval for differentiable search index with query generation. In *Gen-IR@SIGIR 2023: The First Workshop on Generative Information Retrieval*, 2023.